Rheolef  7.2
an efficient C++ finite element environment
poisson_robin.icc

The Poisson problem with Robin boundary condition – solver function

field poisson_robin (Float Cf, const geo& boundary, const field& lh) {
const space& Xh = lh.get_space();
trial u (Xh); test v (Xh);
field uh (Xh);
problem p (a);
p.solve (lh, uh);
return uh;
}
field lh(Float epsilon, Float t, const test &v)
see the Float page for the full documentation
see the field page for the full documentation
see the form page for the full documentation
see the geo page for the full documentation
see the problem page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
point u(const point &x)
rheolef::details::is_vec dot
std::enable_if< details::has_field_rdof_interface< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type grad(const Expr &expr)
grad(uh): see the expression page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
Definition: integrate.h:211
field poisson_robin(Float Cf, const geo &boundary, const field &lh)
Definition: sphere.icc:25
Definition: leveque.h:25