Rheolef  7.2
an efficient C++ finite element environment
dirichlet_hdg_average.icc

The Poisson problem by the hybrid discontinuous Galerkin method – local averaging function

size_t k = uh.get_space().degree();
size_t d = uh.get_geo().dimension();
space Zh (uh.get_geo(), "P0");
trial zeta(Zh); test xi(Zh);
integrate_option iopt;
iopt.invert = true;
if (k >= 1) {
form inv_mz = integrate (zeta*xi, iopt);
iopt.set_order(2*k+2);
field lh = integrate (uh*xi, iopt);
return inv_mz*lh;
}
const space& Mh = lambda_h.get_space();
trial lambda (Mh); test mu (Mh);
form inv_ms = integrate("sides", lambda*mu, iopt);
field inv_sh = inv_ms*field(Mh,1);
field lh = integrate (on_local_sides(inv_sh*lambda_h*xi));
return (1./(d+1))*lh;
}
field lh(Float epsilon, Float t, const test &v)
see the field page for the full documentation
see the form page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
field dirichlet_hdg_average(field uh, field lambda_h)
std::enable_if< details::is_field_expr_v2_variational_arg< Expr >::value,details::field_expr_quadrature_on_sides< Expr > >::type on_local_sides(const Expr &expr)
on_local_sides(expr): see the expression page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
Definition: integrate.h:211