Rheolef  7.2
an efficient C++ finite element environment
harten_show.cc

The Burgers problem: the Harten exact solution – visualization

#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "harten.h"
int main(int argc, char**argv) {
environment rheolef (argc, argv);
geo omega (argv[1]);
space Xh (omega, argv[2]);
size_t nmax = (argc > 3) ? atoi(argv[3]) : 1000;
Float tf = (argc > 4) ? atof(argv[4]) : 2.5;
Float a = (argc > 5) ? atof(argv[5]) : 1;
Float b = (argc > 6) ? atof(argv[6]) : 0.5;
Float c = (argc > 7) ? atof(argv[7]) : 0;
branch even("t","u");
for (size_t n = 0; n <= nmax; ++n) {
Float t = n*tf/nmax;
field pi_h_u = lazy_interpolate (Xh, harten(t,a,b,c));
dout << even(t,pi_h_u);
}
}
see the Float page for the full documentation
see the branch page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
rheolef::space_base_rep< T, M > t
odiststream dout(cout)
see the diststream page for the full documentation
Definition: diststream.h:467
see the space page for the full documentation
The Burgers problem: the Harten exact solution.
int main(int argc, char **argv)
Definition: harten_show.cc:29
This file is part of Rheolef.
field_basic< T, M > lazy_interpolate(const space_basic< T, M > &X2h, const field_basic< T, M > &u1h)
see the interpolate page for the full documentation
Definition: field.h:871
rheolef - reference manual
Definition: harten.h:26