H.Schwab

DNA Replication

Figure 12.3 A replication eye forms a theta structure in circular DNA.

Figure 12.4 The replication eye becomes larger as the replication forks proceed along the replicon. Note that the 'eye' becomes larger than the nonreplicated segment. The two sides of the eye can be defined because they are both the same length. Photograph kindly provided by Bernard Hirt.

DNA Polymerases of E.coli

Туре	Structure	Biochemical Function	Function in cell
DNA Polymerase I Pol I	1 Subunit 928 aa 103 kDa	DNA Polymerase 3'-5' Exonuclease	Gap filling (Okazaki fragments) DNA Repair
DNA Polymerase II Pol II	88 kDa	DNA Polymerase	DNA Repair??
DNA Polymerase III Pol III	10 different subunits	DNA Polymerase 3'-5' Exonuclease	The replication polymerase

Abb. 6.4 DNA-Polymerase I von Escherichia coli. Die Lage der drei funktionellen Domänen am DNA-Substrat: DNA-Polymerase und 3'-5'-Exonuclease am 3'-OH-Ende, 5'-3'-Exonuclease am 5'-Ende [nach 11].

Abb. 6.18 Replikationsgabel. DNA-Helikase, Primase und SSB-Protein sind in diesem Bild nicht gezeichnet, um die komplizierte Situation nicht noch komplizierter zu machen. Es geht um die Position des DNA-Polymerase III-Holoenzyms an der Gabel. Das Enzym ist ein Dimer aus zwei Core-Einheiten, die durch das Protein τ zusammengehalten werden (Abb. 6.8). Am Vorwärts-Strang sorgt ein β-Ring für die Prozessivität der Pol III. Auch auf dem Rückwärts-Strang ist die Pol III über eine β-Ringklemme an die DNA gebunden. Aber sobald das Okazaki-Fragment fertig ist, verläßt Pol III ihren Platz, um sich an die
B-Ringklemme zu binden, der inzwischen weiter vom y-Komplex aufgeladen wurde. Mit anderen Worten, auf dem Rückwärts-Strang springt die Pol III zwischen zwei ß-Ringklemmen, nämlich zwischen der einen am Ende des Okazaki-Fragments und der anderen, die am RNA-Primer zu liegen kommt [nach 13, 20].

DNA replication fork

H.Schwab

Genetik und Gentechnik I

iming in \$X replicons. However different met.

DNA Methylation Status Controls Replication Initiation

Figure 13.24 Replication of methylated DNA gives hemimethylated DNA, which maintains its state at GATC sites until the Dam methylase restores the fully methylated condition.

Figure 13.25 Only fully methylated origins can initiate replication; hemimethylated daughter origins cannot be used again until they have been restored to the fully methylated state.

Figure 13.26 A membrane-bound inhibitor binds to hemimethylated DNA at the origin, and may function by preventing the binding of DnaA. It is released when the DNA is remethylated.

Figure 12.10 An *ARS* extends for ~50 bp and includes a consensus sequence (A) and additional elements (B1-B3).

Alternate Strategies for Replication of Circular DNA

D-loop Displacement

Genetik und Gentechnik I

Alternate Strategies for Replication of Circular DNA

Rolling Circle Mechanism

- → no RNA Primer
- \rightarrow 3' OH generated y nicking
- → different types of DNA generated
 - ds circular DNA
 - ss circular DNA
 - concatemeric linear DNA

Figure 12.18 Rolling circles can be used for varying purposes, depending on the fate of the displaced tail. Cleavage at unit length generates monomers, which can be converted to duplex and circular forms. Cleavage of multimers generates a series of tandemly repeated copies of the original unit. Note that the conversion to double-stranded form could occur earlier, before the tail is cleaved from the rolling circle.

Genetik und Gentechnik I

Figure 12.19 oX174 RF DNA is a template for synthesizing single-stranded viral circles. The A protein remains attached to the same genome through indefinite revolutions, each time nicking the origin on the viral (+) strand and transferring to the new 5' end. At the same time, the released viral strand is circularized. A protein nicks origin and binds to 5' end strand + strand Rolling circle replication displaces minus strand **DNA** synthesis Replication fork passes origin, A protein nicks DNA, & binds to the new 5' end Released plus strand forms covalent circle

Figure 12.23 Transfer of chromosomal DNA occurs when an integrated F factor is nicked at *oriT*. Transfer of DNA starts with a short sequence of F DNA and continues until prevented by loss of contact between the bacteria. Following synthesis of a complementary strand, the transferred material may recombine with the bacterial chromosome in the recipient.

H.Schwab

Genetik und Gentechnik I

Abb. 6.36 Telomerase. Der RNA-Bestandteil der Telomerase enthält einen Abschnitt, der Basenpaarungen mit der Telomer-Sequenz eingehen kann. Überstehende RNA-Sequenzen dienen als Matrize für die DNA-Polymerisierung. Dann bewegt sich das Enzym um die Länge einer Telomer-Einheit weiter (Translokation), und der Syntheseschritt wiederholt sich [nach 3].

Tab. 6.6	Sequenzwiederholungen an Telo-
meren.	

Art	Sequenz	
	Jequenz	
Tetrahymena (Ciliat)	TTGGG	
Oxytricha (Ciliat)	TTTTGGGG	
Trypanosoma	TTAGGG	
Saccharomyces (Hefe)	TG ₁₋₃ TG	
Mensch	TTAGGG	

Die gezeigten Sequenzen laufen in 5'-3'-Richtung auf die Enden der Chromosomen zu, wie in der Abb. 6.**36** angedeutet. Beachte die Ähnlichkeit der Sequenzen. Tatsächlich ist gezeigt worden, daß die menschliche Telomer-Sequenz in Hefe-Zellen funktioniert.

28.10.14

Segregation – Partitioning

Statistical Distribution

Active segregation mechanisms

True partitioning

Enhancement of maintenance

Multimer resolution systems → Plasmid monomerization DNA-Configuration (e.g. pSC101) Regulation of Cell Division Killing of host cells

Genetik und Gentechnik I

Figure 12.24 The fixed interval of 60 minutes between initiation of replication and cell division produces multiforked chromosomes in rapidly growing cells. Note that only the replication forks moving in one direction are shown; actually the chromosome is replicated symmetrically by two sets of forks moving in opposite directions on circular chromosomes.

H.Schwab

Figure 12.28 *E. coli* generate anucleate cells when chromosome segregation fails. Cells with chromosomes stain blue; daughter cells lacking chromosomes have no blue stain. This field shows cells of the *mukB* mutant; both normal and abnormal divisions can be seen. Photograph kindly provided by Sota Hiraga.

parA, parB: Protein codierende Gene *parC : Protein-*Bindestelle auf DNA

Figure 12.30 A common segregation system consists of genes parA and parB and the target site parS. parB parA parS

Bacterial Mitotic Machineries.

Cell, Volume 116, Issue 3, Pages 359-366 K. Gerdes, J. Møller-Jensen, G. Ebersbach, T. Kruse, K. Nordström

Figure 1. Genetic Structure and Components of Type I (P1, F, and pB171) and Type II Partitioning Loci (R1)In par of R1, ParR binds to two times five direct repeats flanking the promoter region in the parC region and thereby autoregulates transcription of the *parMR* operon. The *parC* region acts as a centromere-like site and has partitioning activity when ParM and ParR are donated in *trans* (Dam and Gerdes, 1994). In par/sop of P1 and F, the A proteins bind to the *par/sop* promoter region and autoregulate transcription. The B proteins, when bound to the *parS/sopC* sites, enhance autoregulation by the A proteins (Hao and Yarmolinsky 2002 and Yates et al. 1999). The par region of pB171 has two cis-acting centromere-like sites to which ParB presumably binds (Ebersbach and Gerdes, 2001). Binding of ParB of pB171 to parC1 autoregulates transcription of the *parAB* operon.

ParM: actin family ATPase

Figure 2. Actin-Like ParM Filaments In Vivo and In Vitro In Vivo: (A) and (B) show cells with polar plasmids (red) located at the tip of ParM filaments (green) visualized by IFM. (C) shows decay of the filaments from mid-cell toward the cell poles. In (D), a single plasmid focus is located at mid-cell without a ParM filament (Møller-Jensen et al., 2003).

In Vitro: (E) shows a 3D reconstruction of a straightened ParM filament obtained by electron microscopy (modified from <u>van den Ent</u> <u>et al., 2002</u>).

Figure 3. Model Explaining R1 *par*-Mediated Plasmid Partitioning during the Cell CyclePlasmids (red) are replicated by the host cell replication machinery, which is located at mid-cell. Replicated plasmids are paired by ParR bound to *parC* (yellow) thereby forming a partitioning complex (I). The partitioning complex forms a nucleation point for ParM filamentation. Continuous addition of ATP-ParM (green) to the filament poles provides the force for active movement of plasmids to opposite cell poles (II). Within the filaments, ATP is hydrolyzed, leading to destabilization of the ParM polymer (III). Nucleotide exchange is required to recharge the ADP-ParM (blue) molecules for a subsequent round of partitioning (IV). Modified from Møller-Jensen et al., 2003.

Figure 4. Dysfunctional MreB Inhibits Chromosome Segregation in *E. coli* In (A), cells ectopically expressed wild-type MreB whereas in (B), the cells expressed an MreB derivative carrying a single aa change in the phosphate2 region (D165V). The top row shows DNA stained with DAPI, the second row cells expressing a GFP-ParB fusion protein that binds to *parS* inserted near *oriC*, and the bottom row cells expressing a GFP-ParB protein that binds to *parS* inserted near *oriC*, and the bottom row cells expressing a GFP-ParB protein that binds to *parS* inserted near *terC* (modified from Kruse et al., 2003).

H.Schwab

Systems facilitating plasmid maintenance in host cell

chwab	Constik und Contochnik I
	AACAAACTCCGGGAGGCAGCGTGATGCGGCAACAATCACAGGGATTTCCCGTGAACGGTCTGAATGAGCGGATTATTTTCAGGGAAAGTGAGIGIGGTCA TTGTTTGAGGGCCCTCCGTCGCACTACGCCGTTGTTAGTGTGCCTAAAGGGCACTTGCCAGACTTACTCGCCTAATAAAAGTCCCCTTGCAGACAGTGAGIGIGGTCA
10	D1 "HOK-PROMOTER"
20	1 GCCCCGTAGTAABTTAATTTTTCATTAACCACCACGAGGCATCCCTATGTCTAGTCCACATCAGGATAGCCTCTTACCGCGCTTTGCGCAAGGAGAAGAAG CGGGGCATCATTCAATTAAAAGTAATT6616616616616616616616616646647666776767767767767767767767767767
	SOK RNA10 "SOK-PROMOTER" -35
30. (400 GCCATGAAACTACCACGAAGTTCCCTTGTCTGGTGTGTGT
	FMETLYSLEUPROARGSERSERLEUVALTRPCYSVALLEUILEVALCYSLEUTHRLEULEUILEPHETHRTYRLEUTHRARGLYSSERLEUCYSGLUILE Hok protein
401 T A	TCGTTACAGAGACGGACACAGGGAGGTGGCGGCTTTCATGGCTTACGAATCCGGTAAGTAGCAACCTAGAGGCGGGCG
	ArgTyrArgAspGlyHisArgGluValAlaAlaPheMetAlaTyrGluSerGlyLysTer
501	term.
6. C	ATECTEGTCTGACTACTGAAGCGCCTTTATAAAGGGGCTGCTGGTTCGCCGGTAGCCCCTTTCTCCTTGCTGATGTTGT TACGACCAGACTGATGACTTCGCGGAAATATTTCCCCGACGACCAAGCGGCCATCGGGGAAAGAGGAACGACTACAACA

Fig. 5. Nucleotide sequence of the parB locus from plasmid R1. Shown are the location of the hok and sok genes encoding the toxin and antisense RNA, respectively. (Reproduced from Gerdes et al., 1986b, with permission of the publisher.)

 \Rightarrow Hok protein: toxic, kills cells ⇒ Expression of Hok protein is triggered at the translational level by antisense RNA \rightarrow sok

 \Rightarrow sok RNA is less stable than hok RNA

Site specific resolution: parA, (parB), res

Killer – Antidote: parE, parD

Abb. 3.20. Lebenszyklus der Bäckerhefe Saccharomyces cerevisiae. Die Haplophase ist rot, die Diplophase blau dargestellt. Nach der Meiose, die in einem Ascus vier haploide Ascosporen hervorbringt, vermehren sich diese vegetativ durch Teilung oder zwei Zellen entgegengesetzten Paarungstyps (a oder α) verschmelzen zu einer Zygote. Auch diese diploide Zelle kann sich vegetativ vermehren.

Unter bestimmten Umweltbedingungen kann aber auch eine meiotische Teilung eingeleitet werden. Es erfolgt somit ein regelmäßiger Wechsel zwischen Haploidie und Diploidie. Die Ascosporen unterschiedlicher Paarungstypen (a und α) können sich spontan auseinander bilden (s.S. 620, Abb. 3.27)

Abb. 3.22. Lebenszyklus des Schimmelpilzes *Neurospora* crassa. Die Haplophase ist rot, die Diplophase blau dargestellt. In der Haplophase bilden sich fadenförmige Mycelien, die einzellige, haploide Sporen (Conidien) jeweils eines Paarungstyps (a oder α) ausbilden können. Treffen Conidien eines Paarungstyps auf ein Mycel des entgegengesetzten Paarungstyps, werden sie in das Mycel aufgenommen. Ihre Kerne durchlaufen mehrere synchrone Mitosen und verschmelzen dann mit den haploiden Kernen des Mycels unter Bildung mehrere (diploider) Zygoten. Die Zygoten liegen in schlauchartigen Fortsätzen des ehemaligen Mycels (nun Perithecium) und formen je einen Ascus. In den Asci folgen die meiotischen Teilungen, wobei die Richtung der Teilungsspindeln festgelegt ist, so daß die Anordnung der Meioseprodukte ihren Ursprung genau feststellen läßt (vgl. Abb.3.27). Den meiotischen Teilungen schließt sich eine Mitose an, deren Teilungsebene ebenfalls festgelegt ist. Die entstandenen acht Ascosporen werden aus den Asci freigesetzt und wachsen zu Mycelien aus. Auch bei diesem Organismus überwiegt die Haplophase

M G₁ R Hiteromaso

Abb. 3.8. Der Zellzyklus. Der Zellzyklus beginnt mit der G_1 -Phase nach der Mitose (M). Wird der Restriktionspunkt (R) überschritten, so beginnt die Replikationsphase der DNA (S-Phase). Nach Abschluß der Replikation folgt die G_2 -Phase, nach deren Abschluß die Zelle in eine neue Mitose eintritt. Der Zeitraum vom Beginn der G_1 -Phase bis zum Beginn der nächsten Mitose wird als Interphase bezeichnet. Die verschiedenen Phasen variieren, je nach Zelltyp, in ihrer Dauer (vgl. Tabelle 3.1). Im Schema sind die relativen Längen der verschiedenen Phasen dargestellt, wie man sie beispielsweise in Zellkulturen findet. Der gesamte Zellzyklus dauert in vielen Fällen etwa 20 Stunden

Eukaryotic Life Cycle

Abb. 6.27 Zellzyklus-Mutanten. a *Saccharomyces cerevisiae* (Bäcker-Hefe). Die Einleitung der DNA-Replikation, die Verdopplung des Spindelpols und die Ausbildung der Knospe erfolgen etwa zu gleichen Zeiten. Deswegen können S-Phase, G2-Phase und Mitose nicht eindeutig voneinander abgegrenzt werden. Die durch Knospung entstandene "Tochter"-Zelle ist zunächst kleiner als die "Mutter"-Zelle. **b** *Saccharomyces pombe* (Spalt-Hefe). Beachte, die Stelle START wird überschritten und die Mitose eingeleitet, wenn die Gene *CDC28* (bei *S. cerevisiae*) bzw. *cdc2* (bei *S. pombe*) aktiv sind [nach 1].

Abb. 3.9. Die Mitose. Während der frühen Prophase wandern die Centriolen zu entgegengesetzten Positionen an der Kernmembran und das Chromatin beginnt, sich zu kondensieren, so daß zunächst langgestreckte Chromosomen sichtbar werden. Im Laufe der Prophase kontrahieren sich die Chromosomen weiter, die zwei Chromatiden werden erkennbar und der Nukleolus löst sich auf. In der späten Prophase löst sich die Kernmembran auf, die Spindel beginnt sich auszubilden und die Chromosomen wandern in die Äquatorialebene des ehemaligen Kernes (vgl. Abb. 3.10B). In der Metaphase liegen alle Chromosomen in der Äquatorialebene. Homologe Chromosomen sind hierbei im allgemeinen zufallsgemäß verteilt und ungepaart. In der Anaphase trennen sich die Chromatiden jedes Chromosoms und wandern zu entgegengesetzten Spindelpolen. Auf diese Weise ist sichergestellt, daß jede Tochterzelle einen vollständigen Satz Chromosomen erhält. In der späten Anaphase liegen die Chromatiden nahe an den Spindelpolen und die Durchschnürung der Zelle beginnt. In der Telophase formt sich die neue Kernmembran, die Centriolen verdoppeln sich und die Dekondensation der Chromosomen beginnt. Während der Interphase haben sich die Chromosomen dekondensiert und formen ein Chromatingerüst im Zellkern. Der Nukleolus hat sich neu ausgebildet. Das Schema zeigt die Mitose einer Tierzelle

Mitosis

Maintaining the diploid status

8 Interphase Leptotän Zygotän -Pachytän Diplotän Diakinese -Meiose 1 Metaphase Anaphase I Telophase XX 10 11 11 Interphase Prophase II Meiose Metaphase II t 0

Meiosis

Reduction to haploid status

1

Z

5 2

Anaphase II

Telophase II

Abb. 3.12. Die Meiose. Die aufeinanderfolgenden Stadien der Meiose sind schematisch dargestellt. Während der ersten meiotischen Teilung werden homologe Chromosomen voneinander getrennt (Präreduktion), während der zweiten meiotischen Teilung die Chromatiden der einzelnen Chromosomen. Jede (diploide) primäre Meiocyte ergibt auf diese Weise vier haploide Meioseprodukte. Im männlichen Geschlecht differenzieren sich diese haploiden postmeiotischen Zellen zu Spermatozoen. Im weiblichen Geschlecht degenerieren meist drei der Meioseprodukte während die vierte haploide Zelle sich zum Ei entwickelt. In einigen Organismen durchlaufen die haploiden Meiose-produkte zusätzliche mitotische Teilungen. Die Prophase der ersten meiotischen Teilung wird aufgrund morphologischer Kriterien der Chromosomenstruktur in eine Reihe von Stadien unterteilt, die bei den meisten höheren Organismen als charakteristische meiotische Chromosomenzustände auftreten. Rekombinationsereignisse in der ersten meiotischen Prophase führen für bestimmte Chromosomenabschnitte zu einer Postreduktion, d.h. zu einer Verteilung väterlicher und mütterlicher Allele erst in der zweiten meiotischen Teilung. Für bestimmte genetische Analysen hat dieser Postreduktionsmechanismus experimentelle Konsequenzen (s.S. 679). Es ist die Meiose von Tieren dargestellt

Abb. 3.13 A–P. Cytologie der Meiose von *Corthohippus* parallelus. Das Männchen besitzt 2n = 17 Chromosomen (X/O), das Weibchen 2n = 18 Chromosomen (X/X). A Männliche und B weibliche mitotische Metaphasechromosomen, C-O Meiose. C Meiotische Prophase I des Männchens. Leptotän. Das X-Chromosom ist heterochromatisch und kondensiert. D Meiotische Prophase I, Zygotän. Die Paarung der Chromosomen hat begonnen, ist jedoch noch unvollständig. Die Chromosomen lassen bereits beide Chromatiden erkennen. Bei stärkerer Vergrößerung sind die Chromomeren erkennbar. E Meiotische Prophase I. Zygotän. Die Paarung der Homologen ist abgeschlossen, so daß acht Bivalente sichtbar sind. Die Chromosomen haben sich in einer typisches Bukettkonfiguration angeordnet, bei der alle Telomeren in einem begrenzten Bereich der Kernmembran angeheftet sind. Bukettstadien sind nicht bei allen Organismen vorhanden. F Meiotische Prophase I. Pachytän. Die gepaarten Chromosomen sind stark verdickt und verkürzt. G Meiotische Prophase I. Diplotän. Jedes Bivalent ist deutlich viersträngig und Chiasmata sind zu erkennen. Ein Chromosomenpaar ist vorzeitig kondensiert (Chromosom 6), ebenso wie das X-Chromosom. H Meiotische Prophase I. Diakinese. Die Chromosomen verkürzen sich durch allmähliche Kondensation, Chiasmata sind teilweise terminalisiert. I Meiotische Metaphase 1.

Die Chromosomen liegen in der Äquatorialebene der Spindel und die Centromeren jedes Bivalents sind oberhalb und unterhalb der Äquatorialebene nach den Spindelpolen ausgerichtet. Das X-Chromosom wandert als ungepaartes Chromosom nach einem Spindelpol. J Meiotische Anaphase I. Die meisten Bivalente haben sich bereits getrennt und wandern auf die Spindelpole zu. Lediglich die langen Arme der größten Bivalente berühren sich noch in der Äquatorialebene. K Meiotische späte Anaphase I. Die Chromosomen liegen an den Spindelpolen. Die beiden Chromatiden jedes Chromosoms sind zu erkennen. Eine der sich bildenden sekundären Spermatocyten erhält das X-Chromosom, während die andere kein Geschlechtschromosom besitzt. L Meiotische Interphase (Interkinese). die Chromosomen sind weitgehend dekondensiert. Lediglich das X-Chromosom im rechten sekundären Spermatocytenkern ist kondensiert. M Meiotische Prophase II. Die Chromatiden jedes Chromosoms sind völlig getrennt und bleiben lediglich am Centromer miteinander verbunden. Das X-Chromosom ist noch immer stärker kondensiert als die übrigen Chromosomen. N und O Meiotische Metaphase II. Die Chromosomen sind in der Äquatorialebene der Spindel angeordnet. P Meiotische Anaphase II. Die Chromatiden haben sich an die Spindelpole verteilt und formen zwei haploide Kerne. (Aus John u. Lewis 1984)