WISSEN • TECHNIK • LEIDENSCHAFT

Protein Engineering

Enzyme Engineering

MOL.921 Molecular Biotechnology II

Molecular Biotechnology - Biocatalysis

- Access to a broad diversity of biocatalysts
 - -- natural diversity \rightarrow "GENOMICS" -- artificial diversity \rightarrow "SYNBIO"
- Economic production of enzymes
 -- recombinant enzymes
- Efficient biocatalysts for any application

(fast and efficient methods for the development of enzymes)

-- enzyme engineering

→ "DIRECTED EVOLUTION" → "RATIONAL DESIGN"

- Novel biocatalysts
 - -- Nanobiotechnology
 - -- novel catalytic structures

Recruitment of enzymes from natural biodiversity

Recruitment of enzymes from natural biodiversity

⁵ Recruitment of enzymes from natural biodiversity

Recruitment of enzymes from natural biodiversity

Metagenome Library

Recruitment of enzymes from natural biodiversity

(Meta) Genome sequencing

Much of the speed with which recent advances in genetics research have been made results from the use of high-throughput DNA sequencers coupled with computerized sequence acquisition, like these devices at the Sanger Centre near Cambridge, England. This technology has made it possible to determine the complete DNA sequence of the human genome.

Natural diversity

Designed Evolution

Concept of "Process Designed Enzymes" Establish set of key enzymes – e.g. esterases key structures / functionalities genes - expression

Develop efficient routes to enzyme engineering tuning enzymes towards specific process needs

Directed Evolution – Rational Design

Enzyme-Engineering \rightarrow basic routes

¹⁰ Prerequisites for Protein Engineering by Rational Design

• X-ray crystallography

Availability of structure information	 "frozen structure information" need for crystallization NMR structure analysis restricted to small proteins information on protein dynamics possible Modelling of structures based on aa sequences and homologies Modelling of substrate-Protein interactions - docking
Availability of information on structure- function relations	 Information on molecular mechanisms of biological functions e.g. reaction mechanism, protein-small molecule interaction (e.g. Information on aa residues involved in biological function e.g. active site residues e.g. sites for cofactor binding

¹³ PCR- mediated, site directed Mutagenesis

Taken from: Human Molecular Genetics. 2nd edition. Strachan T, Read AP. New York: Wiley-Liss; 1999.

21.4.16

Enzyme-Engineering \rightarrow basic routes

Random Mutagenesis

Gene Shuffling

Directed Evolution - outline 16 **DNA Fragments Mutein library** Introduced in **DNA Fragment** expression host encoding desired enzyme **DNA fragments** derived by synthesis PCR synthetic gene Screening **Selection** Hits **Generation of artificial diversity** Cultivation

Functional *in vivo* expression of enzyme variants

¹⁷ Molecular Evolution of Enzymes

¹⁸ Generation of Mutant Libraries

Random mutagenesis of entire coding region

- error prone PCR, SeSaM
- *in vivo* mutation systems (mutator strains, transposons)
- deletion and insertion strategies (scanning mutagenesis)

Random mutagenesis of selected parts of coding region

- cassette mutagenesis with degenerate oligonucleotides
- megaprimer PCR

Site Saturation Mutagenesis

All possible amino acids at specific position(s)

¹⁹ Mutagenesis by Error prone PCR

Error Prone PCR – mutagenic conditions $[Mg^{++}] \leftarrow \rightarrow [Mn^{++}]$ [dNTP] $Taq Polymerase \rightarrow Mutazyme$

Taq DNA Polymerase

Bias for mutating A and T under error-prone conditions,

Mutazyme[®] DNA polymerase:

Bias for mutating G and C

Mutazyme II DNA polymerase:

Blend of Mutazyme DNA polymerase and a novel *Taq* DNA polymerase mutant exhibiting a higher error rate

http://www.genomics.agilent.com/article.jsp?pageId=376&_requestid=1212515

Error Prone PCR - conditions

S A B C D F

	Condition		[MgCl ₂]			[MnCl ₂]		[dNTPs]				
	Standard		1,5mM						0,1mM each			
	A B		7mM						1mM each			
			7mM			0,2mM		1mM each				
	С		7mM			0,5mM		M	1mM each			
	D		7mM			1,0mM		1mM each				
	F		7mM		0.5mM		1,0mM dCTP + dTTP each					
						0,511101		VI	0.2 mM dATP + dGTP each			
	Conditon	seque basep	nced bairs	A -> C T -> G	A -> T ->	G G	G -> A C -> T	G -> T C -> A	A -> T T -> A	G -> C C -> G	Insertion Deletion	Mutation rate
	Standard	238	38								-	0,00%
	А	238	38	1	1				2		-	0,17%
	В	238	38		7	,	2				-	0,34%
	С	238	38		10	5	2	1	4	1	-	0,76%
	D	238	38		10	C	1	1	4	3	-	0,85%
	F	238	38	_	2	2	2				-	0,17%

Mutagenesis by Sequence Saturation Mutagenesis

Biospektrum 3, 277

Mutagenesis by Sequence Saturation Mutagenesis

TU Graz

22 Annealing of wild type strand to biotinylated template and elongation 5 🔘 U 3 51 UU 3 51 (31 5° 51 1 31 51 LILI 31 51 2nd strand synthesis with dNTPs 5" 3° 5° \mathfrak{X} 51 5 $\mathbf{3}^{\prime}$ 3 6 5' 51 35' NN PCR amplification 3° **0** 5' \mathfrak{T} 51 5° \mathbb{R}^{n} 5 5° \diamond 31 6 5' 3 51 3° ΜN 5 Schenk et al. (2006) 5 **SeSaM** Biospektrum 3, 277 31 N ¢ 5

Experimental Library Limits Length N, M aa => M^N aa sequences

N	<u>M</u> N	Mass of Library
3	104	
5	106	
10	1013	Milligrams
20	1026	Tons
50	1065	Mass of Earth
100	10130	
200	10260	

Typical Protein Size

Library management

Library management Partial fragment mutagenesis

⇒Mutagenesis of subfragments

⇒DNA from epPCR 1 used as template for epPCR 2, etc...

Mutagenized fragments are introduced in expression vector by megaprimer PCR

⇒ 1- 3 mutations per ~100bp (fragment)

Random Mutant Libraries by Megaprimer PCR

²⁷ Random Mutant Libraries by Megaprimer PCR

Generation of Diversity by Recombination

In vitro methods

Random fragmentation

• DNase I digestion; Stemmer (1998) Nature **370**, 389

Random priming synthesis

Shao et al. (1998) Nucleic Acids Res. 26, 681

Staggered Extension Process (StEP)

Zhao et al. (1998) Nature Biotechnol. 16, 258

RACHITT (Random Chimeragenesis on Transient Templates)

Coco et al. (2001) Nat. Biotechnol. 19, 354

In vivo gene recombination

Site-specific recombination

Cre-lox; Lambda

Homologous recombination

E.coli, Lambda phage, Saccharomyces cerevisiae

Recombination of nonhomologous sequences ITCHY, SCRATCHY, SHIPREC

Molecular Evolution of Enzymes

In vitro Recombination of Sequences

"Gene Shuffling" "Family Shuffling"

³⁰ Molecular Evolution of Enzymes In vitro Recombination of Sequences

"Gene Shuffling" "Family Shuffling"

Molecular Evolution of Enzymes

In vivo Recombination of Sequences

"Gene Shuffling" "Family Shuffling"

random recombination

Molecular Evolution of Enzymes

Rounds of Random Mutagenesis

Recombination of Sequences

Random Recombination Libraries by StEP

Aguinaldo & Arnold (2003) Methods Mol Biol, **231**,105

34 Recombination of non-homologous sequences

Pool of random point fusions

Overview of the yeast shuffling strategy

MSH2 :

key player in homeologous recombination, mismatch repair and mutagenesis

Screening - Selection

First law of directed evolution:

"You get what you screen for"

Frances Arnold

Screening - Selection

Screening \rightarrow Individual Analysis of clones

Essentials:

- high throughput HTP
- simple and robust
- good discriminatory capacity
- accessible to robot handling
- application of process-near conditions (e.g. organic solvents)
- allows work with desired substrate \rightarrow no surrogates

Selection \rightarrow Growth advantage

```
Prerequisite:
Bio-compatibility
```

TU Graz

Screening – Selection: Problems to consider

$\circ~$ Uniform growth of individual clones

Substrate supply Mass transfer (oxygen supply, CO₂ emmission heat transfer (e.g. position on plate/shaker) inoculation cross contamination

Homogeneous expression levels

Host system Vector copy number Induction conditions Functional expression (e.g. folding, post-translational modifications

• Equal access/release of reactants to/from enzyme

membrane/cell wall transfer cell disruption

Screening Systems → hosts

Hosts for Enzyme Screening

Bacterial Hosts

<i>E.coli</i> strains	\rightarrow	"Golden Standard"
Bacillus strains	\rightarrow	secretory enzymes
Streptomyces sp.	\rightarrow	expression background

Fungal Hosts

Pichia pastoris	\rightarrow	enzymes of eukaryo	tic origin
-----------------	---------------	--------------------	------------

New Library Concepts

Gateway Technology in vivo Transfer Systems Genome integration

Copyright© 2001-2005 GeneCopoeia, Inc. All Rights Reserved.

New Strategy for Library Generation Random & Site Directed mutagenesis

Directed Evolution in *Pichia pastoris*

Screening by filter assays

Transfer to filter

Colonies on agar plates

Substrate – Reaction Detection on filter

Direct substrate reaction and detection on agar plate Advantages:

- No interference with media
- Use of solvent possible
- Cell lysis possible
- Pre-treatment (e.g. T, pH)

Screening by filter assays

Screening based on detection of pH shift Example: Esterases

⁴⁵ Screening - Selection

Cultivation in Liquid Culture

Deepwell plates Shake flasks

Lab fermenters

Detection

Microplate assays – Photometric Fluorometric HTP chromatography (e.g. HPLC) HTP MS methods HTP NMR methods

Microplate Assays

rac-linalyl acetate

(R)-linalyl acetate

22: wt enzyme 23: blank lysate

(b)

Improvement of the nitrile hydratase expression level by redesign of the expression cassette

Introduction of a second copy of the optimized ribosome binding site upstream of the beta subunit

 \rightarrow dramatic increase in soluble (and active) nitrile hydratase formation.

 \rightarrow green appearance of the pellet of cells producing high amounts of the iron containing enzyme.

(a)

⁵⁰ NADH Fluorescence Coupled Assay

Mixture of *E. coli* colonies with and w/o threonine aldolase activity

⁵¹ NADH – A Versatile Reporter

⁵² Data evaluation

1.Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/, 1997-2006.

⁵³ Micro-colony Arrays

Ordered Arrays

54 Micro-colony Array Screening Platform

High throughput detection of enzyme activity

6000 colonies on filter (microplate formate)

Direct spotting from library pool – no colony picking

Replicas of filters

Pre-treatment of arrays possible (e.g. solvents, T , pH, etc.) Simultaneously monitoring CCD camera

Enzyme reaction

Detection system (e.g. chemosensor)

Image analysis & automated hit detection

Micro-colony Array Screening Platform

Sensor design

Sensor design: pH-Sensor

Esterase screening

Features:

- Lower or higher buffer capacity allows adjustment to activity of the colonies.
- The pK of the indicator defines the sensitive pH window.
- Acryl derivatives of fluoresceine allow covalent linkage of the indicator to the matrix.

This system is usable for every enzymatic reaction which releases or consumes protons.

Sensor design: pO₂-Sensor

Features:

- Material of the particles allows adjustment to activity of the colonies.
- Due to the diffusion of oxygen in the sensor a steady state is the result of the oxygen consuming reaction.
- Kinetic and end point measurements are possible.

This system is usable for every enzymatic reaction which consumes oxygen.

Sensor design: Aldehyde sensor

Features:

- Different matrices for different aldehydes.
- Screening in non-aqueous environment is possible.
- Incorporation in MTP should be possible.
- Other indicators have to be examined.

This system is usable for every enzymatic reaction which releases aldehydes.

Sensor design: prim. Amine sensor

Amidase screening

Features:

- kinetic evaluation in the linear parts of the curve evaluation eva
- matrix determines the screenable activity range.
 - Sensor is easily adaptable for other amine indicators.
 - Kinetic and end point measurements are possible.
 - Incorporation in MTP is possible.
 - Protease reactions are visualisable.

This system is usable for every enzymatic reaction which releases prim. amines.

Micro-colony Array Screening Platform

Procedure for screening with micro colony chips

⁶³ Micro-colony Array Screening Platform

Measurement – Data Evaluation manually

Change array data if necessary, else Set Grid Num of Hor-Blocks 4 Select Image Crop Array Set num of hor-blocks manually Num of Ver-Blocks Chanel 3 Set Grid Green Set num of ver-blocks manually Number of Subblocks 4 Intensity Mean Shift Dark Set number of subblocks manually Number of Spots/Block Rotation Angle 4 Clear Grid Data 0 Set number of spots manually Spot Diagonal Image: 53 6.00 Set spot diagonal manually **Composition of the array:** - Spotting parameters – Fix spot-diameter - Channel - Intensity - Rotation angle theoret. grid definition

Measurement – Data Evaluation automatically

- ... normalise image for comparison
- ... find the position of the spots
- Corresponding block
- Situation inside the block

... find the centre of the colonies

Spot-content from centre and diameter

Finding the centre of the colonies

Measurement – Data Evaluation Results

Spot positions are ...

- clearly identified as long as there is a signal.
- approximated when there is no signal.
- missed if the real centre is too far from the first grid approximation.

Colony chips with less than ~ 30% visible spots:

- alignment of the theoret. grid with the real grid not possible.
- guide spots are not replicable.
- an image of the grid is needed second camera for colony mage

