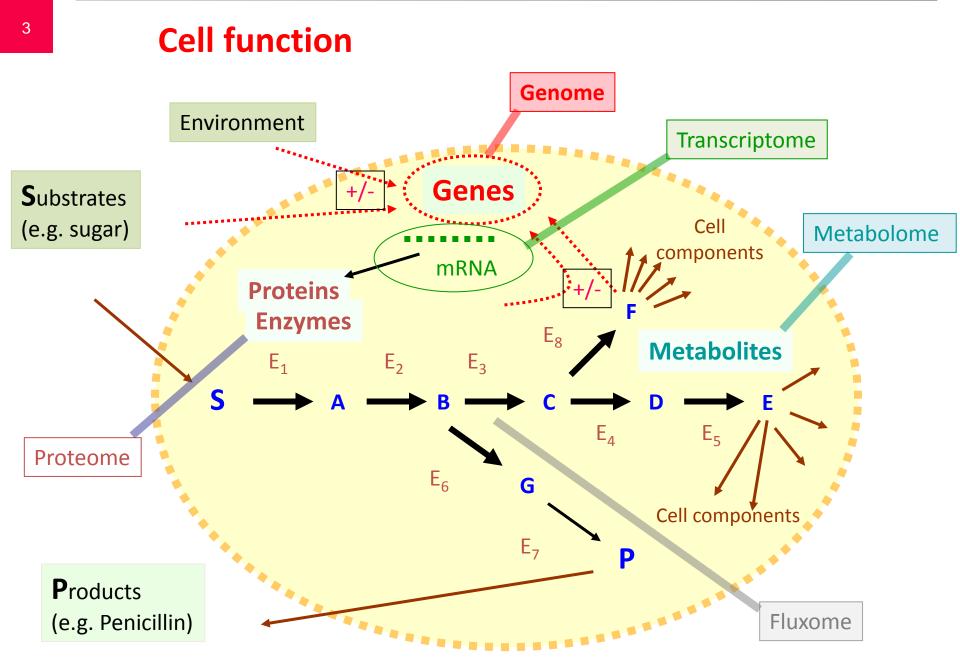
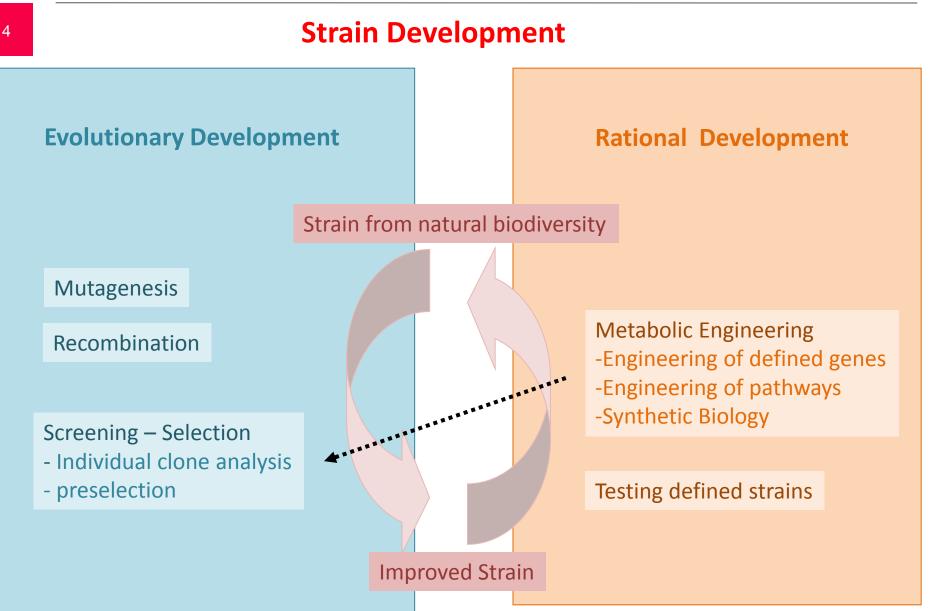
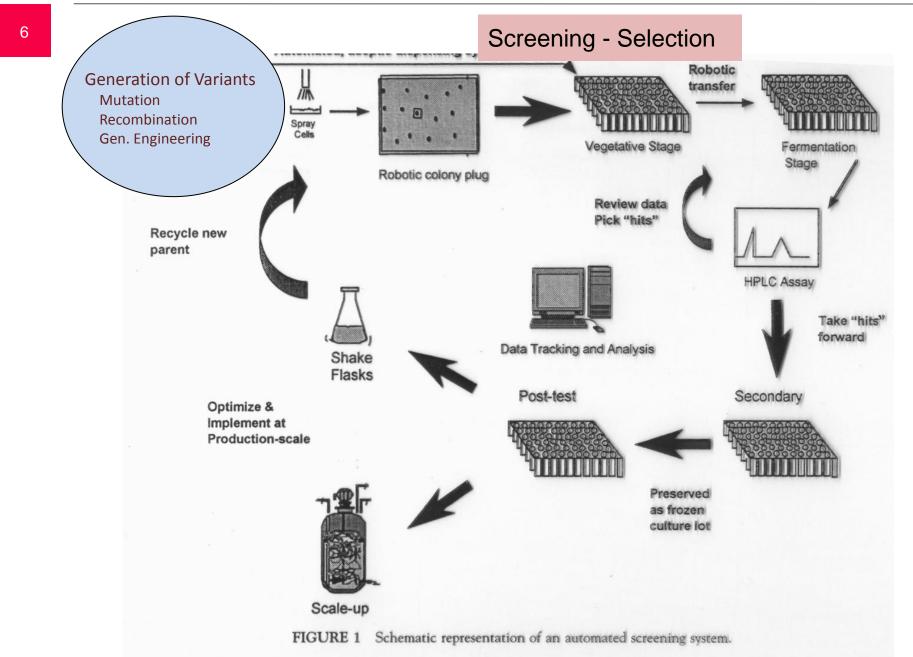


Metabolic Engineering

MOL.921 Molecular Biotechnology II

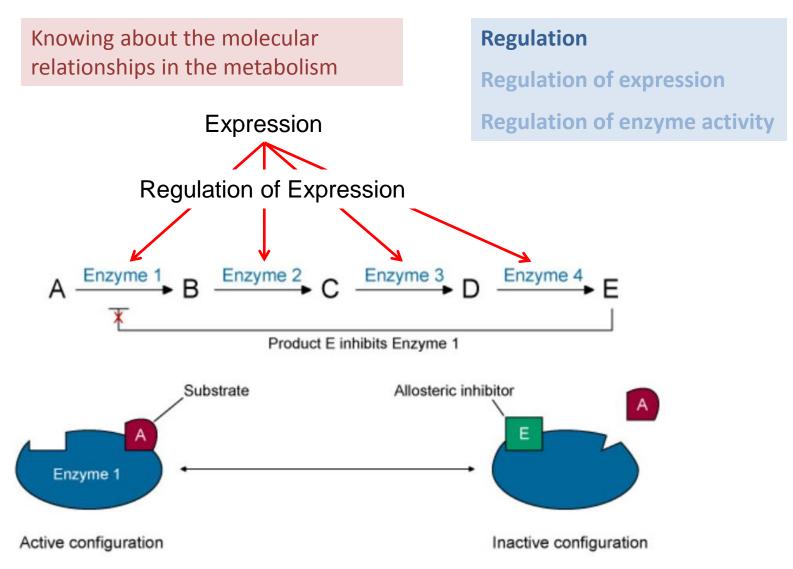

MOL.921 Molecular Biotechnology II


Strain Development

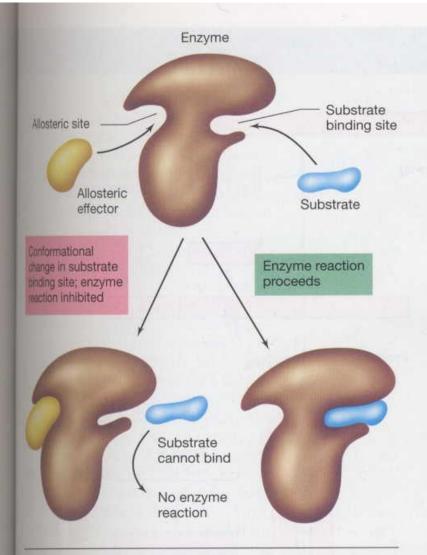

Table 1. Classification of mutations, their origins, and potential effects						
Type of change	Length	Source of mutation	Effects ^a			
Small local changes						
Substitution Insertion Deletion Duplication	1 bp 1 to several bp 1 to several bp 1 to several bp	Spontaneous mutagenesis Replication infidelities	Gene silencing Gene expression Cryptic gene activation Altered protein specificities			
DNA rearrangeme	DNA rearrangements					
Inversion Duplication Insertion Deletion Excision	Several bp up to several kb	Homologous recombination Mobile genetic elements (i. e. IS elements, transposons)	Gene silencing Gene expression Cryptic gene activation Gene dosage Gene organization Gene mobilization Domain fusion Domain swapping			
DNA acquisition		Sexual Recombination				
Horizontal DNA transfer	Several kb up to hundreds of kb	Protoplast fusion Transformation Conjugation Transduction (phage-mediated)	Increase of total genetic information content Gene silencing			

^a A particular source of mutation is not necessarily capable of causing all listed effects.

MOL.921 Molecular Biotechnology II


Evolutionary strain development

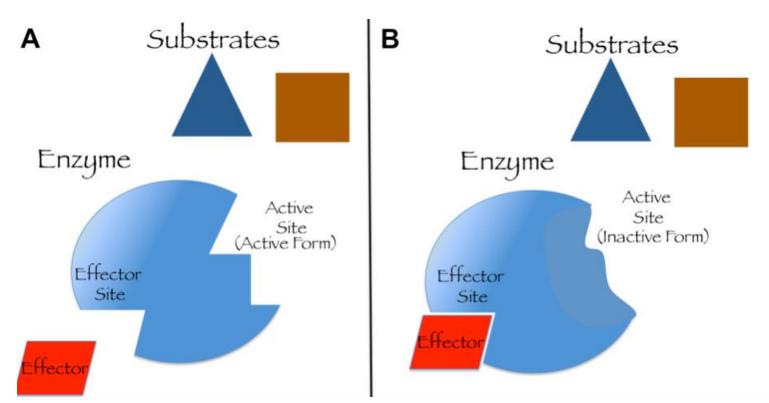
Rational approaches for strain improvement


https://wikispaces.psu.edu/download/attachments/48201949/image-8.jpg

Rational approaches for strain improvement

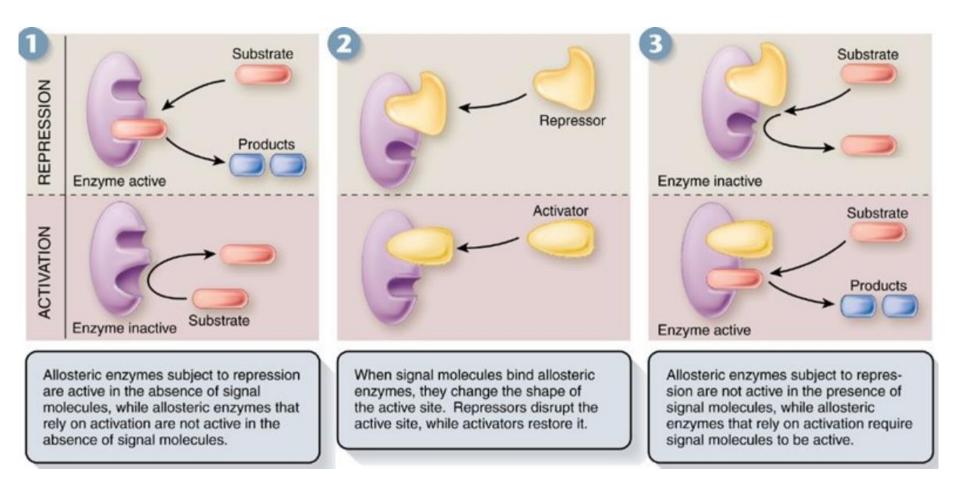
Knowing about the functional relationships of enzymes in the metabolism

Regulation

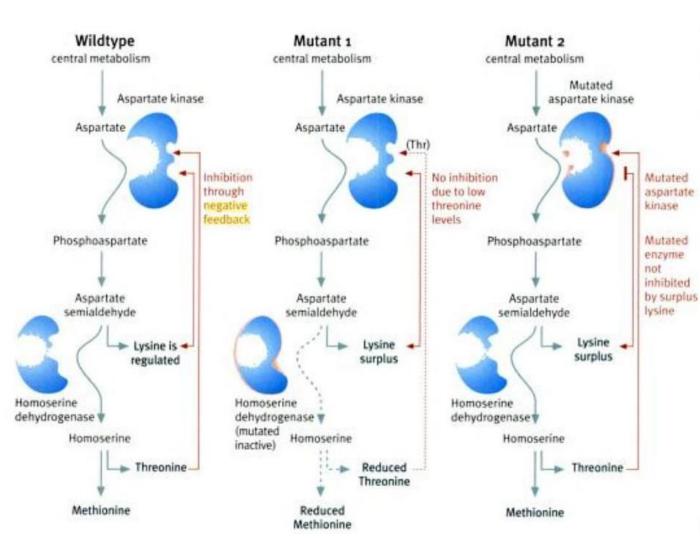

HGURE 7.3 Mechanism of enzyme inhibition by an allisteric effector. When the effector combines with the allisteric site, the conformation of the enzyme is altered so that the substrate can no longer bind.

Rational approaches for strain improvement

Knowing about the functional relationships of enzymes in the metabolism


Regulation

Allosteric enzyme with active site and effector site. A) Effector unbound, Active site in active conformation – capable of processing substrate B) Effector bound, Active site in inactive conformation – incapable of processing substrate https://downhousesoftware.wordpress.com/tag/allosteric/



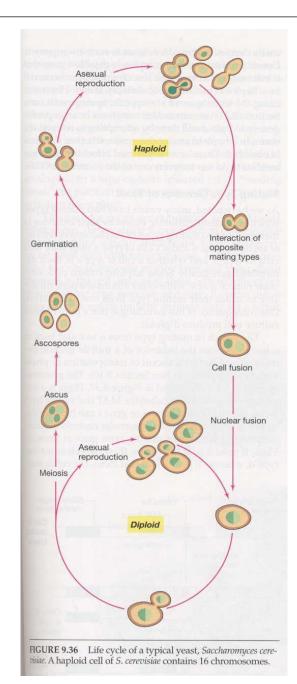
Effector Actions may be Inhibitory (top) or Activating (bottom)

Deactivation of feedback regulation

Corynebacterium glutamicum

Fig. 4.21 Negative feedback during the synthesis of lysine in wildtype *Corynebacterium* (electron microscopic view, top) and two mutants. In the first mutant, the enzyme homoserine dehydrogenase has been inactivated. In the second mutant, aspartate kinase has been modified so that it cannot be inhibited even by excess production of lysine.

11


Scrooning -

12

Lysine antimetabolites	Threonine antimetabolites	Tryptophan antimetabolites	Rational Elements		
s-(2-aminoethyl)-l- cysteine	α -amino- β -hydroxy-valeric acid	5-methyl-tryptophan			
4-oxalysine	β -hydroxy-lysine	4-methyl-tryptophan			
L-lysine-hydroxamate	Norleucine	6-methyl-tryptophan	Mutants (phenotype)	Produced amino acid	
2,6-diamino-4- hexenoic acid	Aminohydroxy- valeric acid	5-fluoro-tryptophan	Tyrosine ⁻	Phenylalanine	
δ -hydroxy-lysine	Norvaline	DL-7-aza-tryptophan	Phenylalanine ⁻	Tyrosine	
lpha-chlorcaprolactam	N-2-Thienyl-	2-azatryptophan	Phe ⁻ , Tyr ⁻	Tryptophan	
	methionine		Homoserine⁻	Lysine	
trans-4,5- dehydrolysine	2-amino-3-mehtyl- thiobutyric acid		Leucine	Valine	
	2-amino-3-hydroxy- hexanoic acid		Table 2: Secretion of amino acids by auxotrophic mutants		

Table 1: amino acid antimetabolites for selection of lysine, threonine or tryptophan overproducing strains

Recombination genetics

Specific/targeted crossing of organisms via sexual reproduction cycles

Cell fusion – fusion of somatic cells

Gene transfer via parasexual mechanisms transduction transformation conjugation

Essential: Screening - Selection

Metabolic Engineering

- > Enhanced production of metabolites in homologous hosts
- Production of modified or new metabolites
- Modification of substrate utilization
- Metabolic pathway design for degradation of compounds (e.g. xenobiotics)
- Modification of cell properties for improved bioprocessing (e.g. growth, product recovery)

Metabolic Engineering

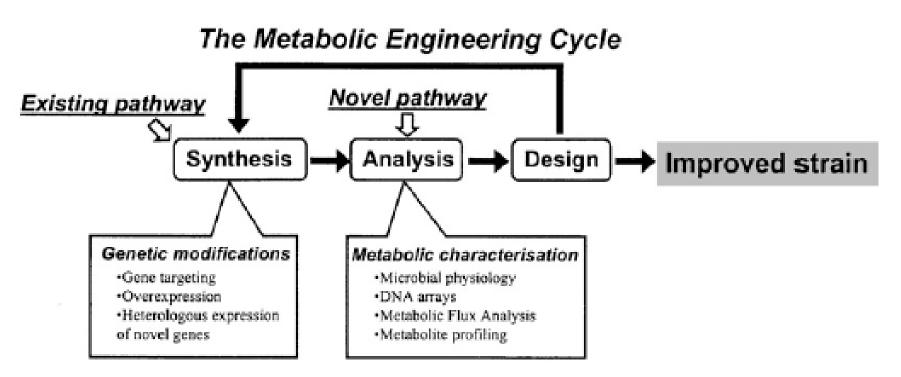
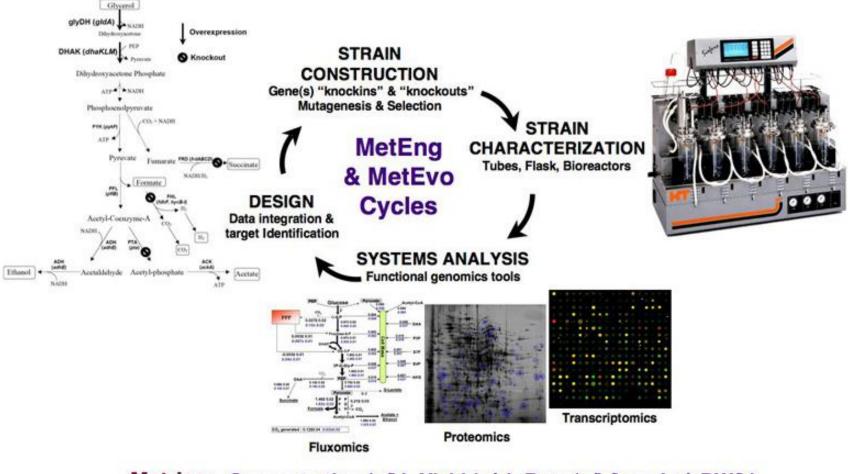



Fig. 1. Principles of metabolic engineering.

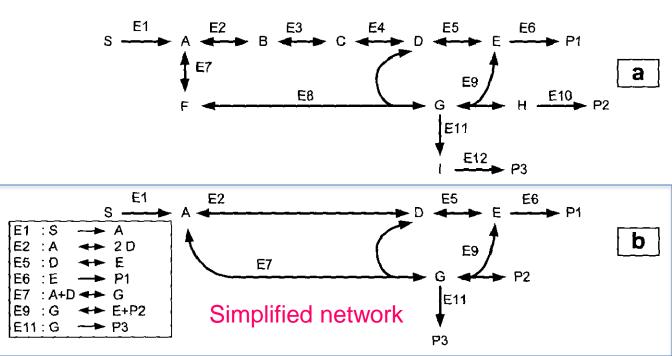
Metabolic Engineering (MetEng) and Metabolic Evolution (MetEvo)

Metrics: Concentration (g/L), Yield (g/g), Rate (g/L/h and g/gDW/h)

16

http://www.ruf.rice.edu/~metabol/metabolic_engineering.shtml

Analysis of metabolic networks


Essential approach: integral identification of influencing variables (parameters)

Metabolic Networks

Reaction network \rightarrow involved biochemical reactions and reaction partners

Regulatory network→ all regulatory interactions

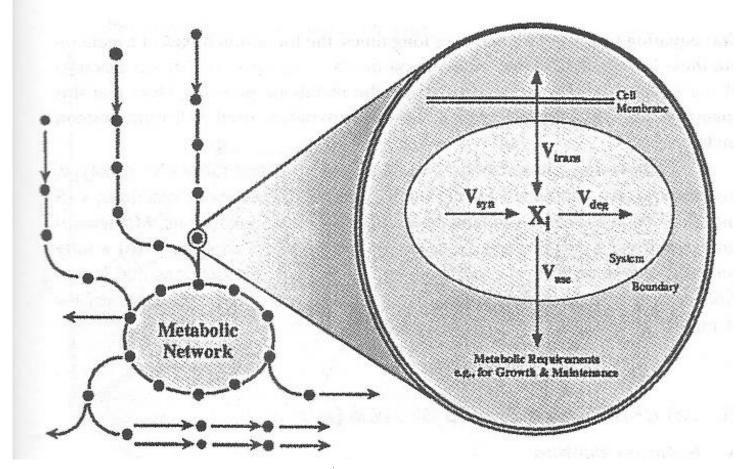
Fig. 12.3a, b. Example for a possible reaction network with 12 reactions (E1-E11) **a** complete network **b** simplified network in case of steady state for all а intermediates A to 1. The inserted box depicts the stoichiometric equations for b and the reversibility of the reactions

Metabolome Analysis

Metabolism – Network

Metabolite pools – depending on state conditions Growth phase External conditions chemical physical genetic constellations

Metabolic flux - Flux Analyses


Intracellular Transport by cell membrane systems Intracellular

Extracellular

Sampling \rightarrow Ultrafast Stopping of all activities

¹⁹ Metabolic Flux Analysis

Figure 1 Flux balance models use material balances around each metabolite in a metabolic network. The concentration of each metabolite X_i is affected by various fluxes V_j ; V_{trans} is the uptake or secretion flux, while V_{use} is the flux required for growth and maintenance; V_{syn} and V_{deg} refer to the fluxes resulting from the metabolic synthesis and degradation of the metabolite.

²⁰ Metabolic Flux Analysis

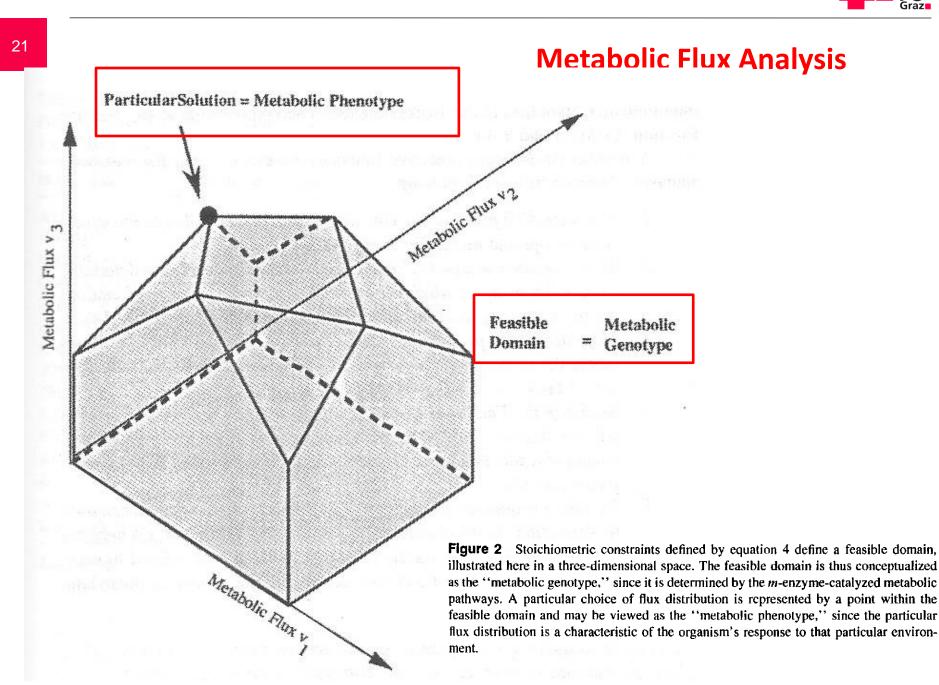
Dynamic mass balance for specific metabolite

$$\frac{dX_{i}}{dt} = v_{syn} - v_{deg} - (v_{use} + / - v_{trans})$$
(1)
$$\frac{dX_{i}}{dt} = v_{syn} - v_{deg} - b_{i} \qquad b_{i} = net transport$$
(2)

Metabolic network for n metabolites and m metabolic fluxes

$$\frac{dX}{dt} = S.v - b$$

$$X = n-dimensional vector (3)$$


$$S = stoichiometric n x m matrix$$

$$b = vector of known metabolic demands$$

$$S.v = b$$

$$(4)$$

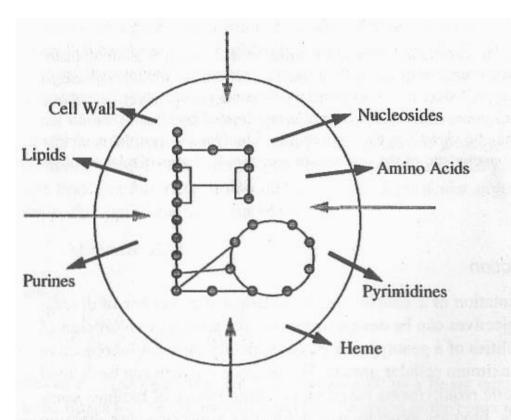
²² Metabolic Flux Analysis

A number of different objective functions have been used for metabolic analysis. These include the following:

1. Minimize ATP production. This objective is stated to determine conditions of optimal metabolic energy efficiency

2. Minimize nutrient uptake. This objective function is used to determine the conditions under which the cell will perform its metabolic functions while consuming the minimum amount of available nutrients

3. Minimize redox production. This objective function finds conditions where the cells operate to generate the minimum amount of redox Potential


4. Minimize the Euclidean norm. This objective has been applied to satisfy the strategy of a cell to minimize the sum of the flux values, or to channel the metabolites as efficiently as possible through the metabolic pathways

5. Maximize metabolite production. This objective function has been used to determine the biochemical production capabilities of *Escherichia coli*. In this analysis the objective function was defined to maximize the production of a chosen metabolite (i.e., lysine or phenylalanine).

6. Maximize biomass and metabolite production. By weighing these two conflicting objectives appropriately, one can explore the trade-off between cell growth and forced metabolite production in a producing strain

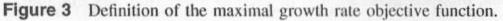
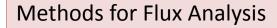
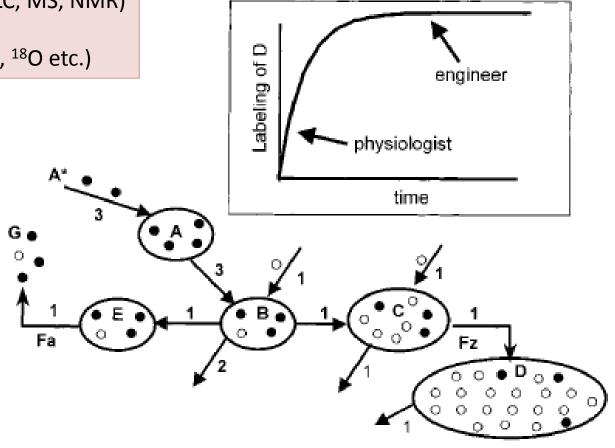
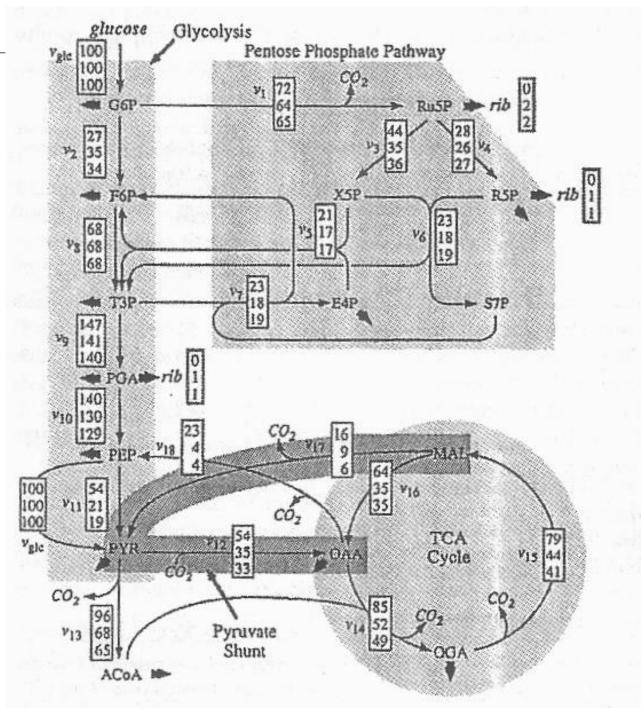



Table 1Metabolic Demands ofPrecursors and Cofactors Required for1 g of Biomass

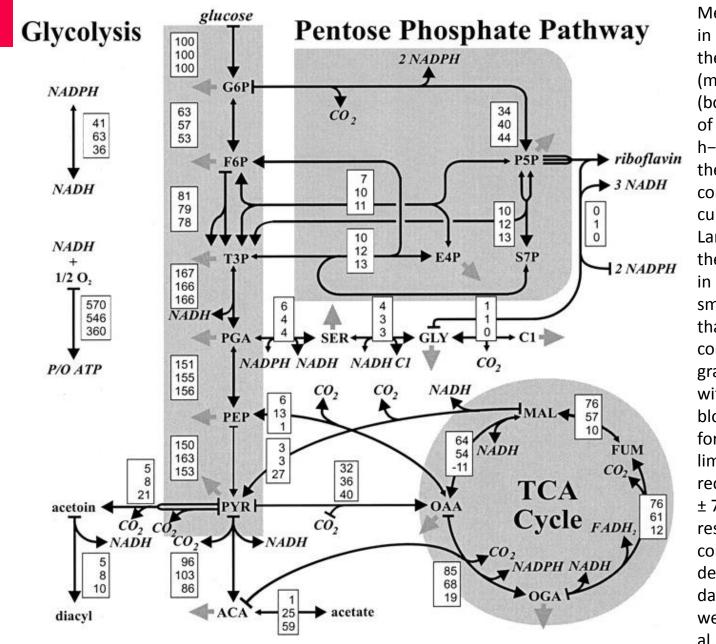
Metabolite	Demand (mmol)		
ATP	41.2570		
NADH	-3.5470		
NADPH	18.2250		
G6P	0.2050		
F6P	0.0709		
R5P	0.8977		
E4P	0.3610		
T3P	0.1290		
3PG	1.4960		
PEP	0.5191		
PYR	2.8328		
AcCoA	3.7478		
OAA	1.7867		
AKG	1.0789		
SuccCoA			



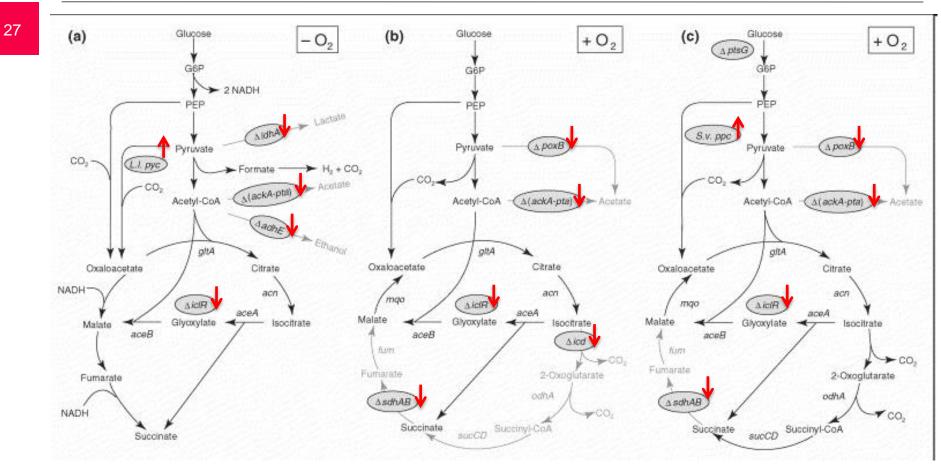
²⁴ Metabolic Flux Analysis



- Metabolite Pools (GC. LC, MS, NMR)
- Isotope tracing (¹³C, ²H, ¹⁸O etc.)

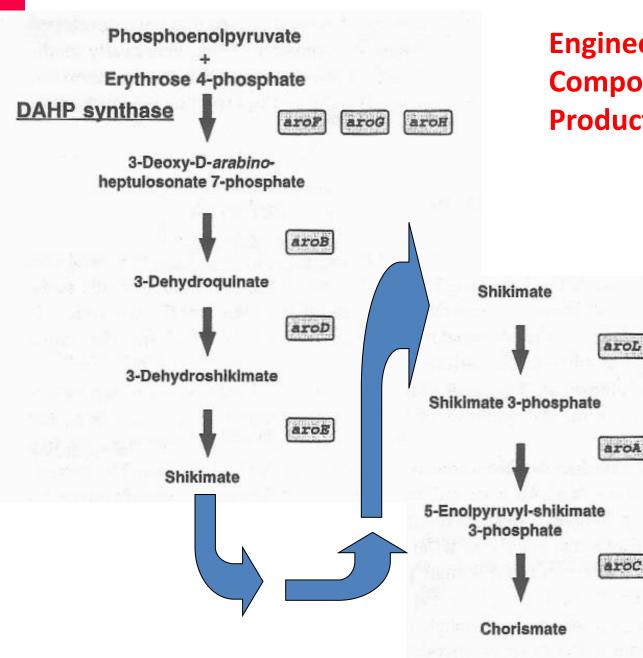

FIG. 1. Example metabolic tracer study from a physiologist's viewpoint. A labeled metabolite "A*" enters a pathway and travels through a number of compartments. Some compartments (A, B, C, E) are inaccessible for sampling and the isotopic enrichment cannot be directly measured. Numerals above flux arrows represent metabolite fluxes. A large pool of an end product, D, may be sampled but physical limitations prohibit continuing the experiment until labeling reaches steady state. Flow of tracer into D may represent a sink for metabolic physiologists and a steady-state system for metabolic engineers as shown in the inset graph. G represents a volatile end product such as CO_2 .

Flux distribution in riboflavin-producing B. subtilis strain PRF. Numbers are normalized to glucose uptake and represent dilution rates of 0.11, 0.41, and 062 h⁻¹ in glucose-limited chemostat.

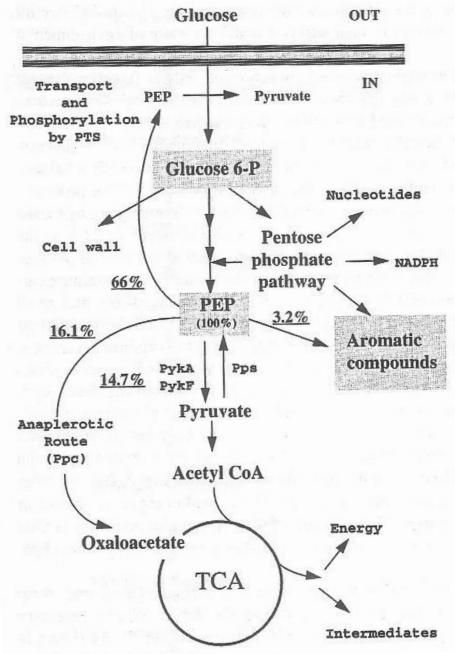

J. Bacteriol. December 2001 vol. 183 no. 24 7308-7317

Metabolic flux distribution in C-limited (top entry in the boxes), N-limited (middle), or P-limited (bottom) chemostat culture of B. subtilis at a D of 0.4 h-1. Fluxes are relative to the specific glucose consumption rate of each culture shown in Fig. 3. Large arrowheads indicate the primary direction of flux in a given reaction, and small arrowheads indicate that a reaction was considered reversible. Solid gray arrows indicate withdrawal of building blocks for biomass formation. For C-, N-, and Plimited cultures we recovered 97% ± 3%, 112% ± 7%, and 104% ± 7% %, respectively, of the consumed carbon in the determined products. The data for C-limited cultures were taken from Dauner et al. (9).

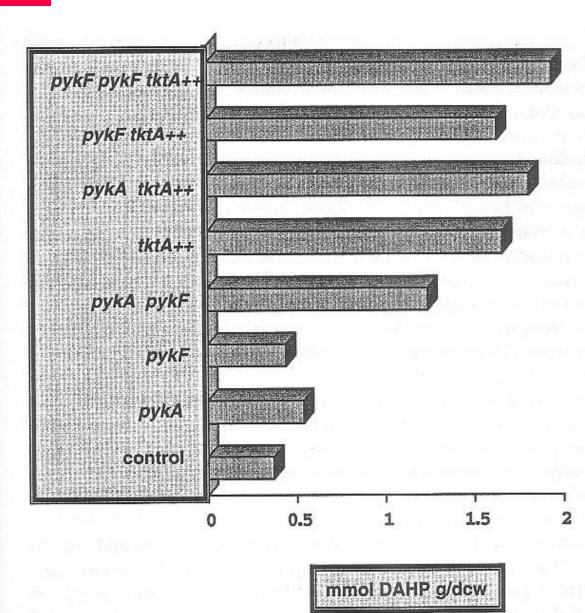
MOL.921 Molecular Biotechnology II


Metabolic Engineering for organic acid production

Metabolic engineering of E. coli strains for anaerobic or aerobic succinate production. Panel (a) shows the metabolism of a strain engineered for anoxic succinate production via the reductive arm of the TCA cycle and via the glyoxylate cycle [30••]. It contains deletions of the genes for lactate dehydrogenase (IdhA), acetate kinase and phosphotransacetylase (ackA-pta), aldehyde-alcohol dehydrogenase (adhE) and a repressor of the aceBAK operon (iclR), and it overexpresses the pyruvate carboxylase gene (pyc) from Lactococcus lactis [30••]. Deletion of iclR leads to induction of the glyoxylate cycle enzymes isocitrate lyase and malate synthase. Panel (b) shows a pathway for aerobic succinate formation exclusively via the glyoxylate cycle [31•]. The corresponding strain contains deletions of ackA-pta and poxB (pyruvate:quinone oxidoreductase) to avoid acetate formation, deletions of icd and sdhAB to block the TCA cycle, and of iclR to induce the aceBAK operon. The pathway shown in panel (c) is similar to the one shown in (b), but the icd gene was not deleted, allowing succinate formation via both the glyoxylate cycle and the oxidative arm of the TCA cycle [32•]. The strain overexpresses the PEP carboxylase gene from Sorghum vulgare (S.v. ppc), which is resistant to feedback inhibition by malate. Next to the respective enzymatic reactions endogenous and heterologous gene names are given. Genetic changes are depicted in grey ovals and the resulting absence of enzyme reactions is highlighted in grey.



Engineering Aromatic Compounds Production in *E.coli*


Engineering Aromatic Compounds Production in *E.coli*

Multiple metabolic pathways related to the formation and consumption of PEP

³⁰ Engineering Aromatic Compounds Production in *E.coli*

DAHP production in strains of E. *coli* in which the central metabolic pathways related to formation of PFP and F4P have been manipulated. DAHP production is an indicator of carbon commitment to aromatic biosynthesis; pykA and pykF represent inactivation (by mutation) of the PykA and PykE isoenzymes of pyruvate kinase, respectively; tktA+ + indicates that the strain carried a p]asmid containing the *E. coli* tktA gene and thus bad elevated levels of transketolase activity; dcw, dry cell weight.

ß-Lactam Antibiotics

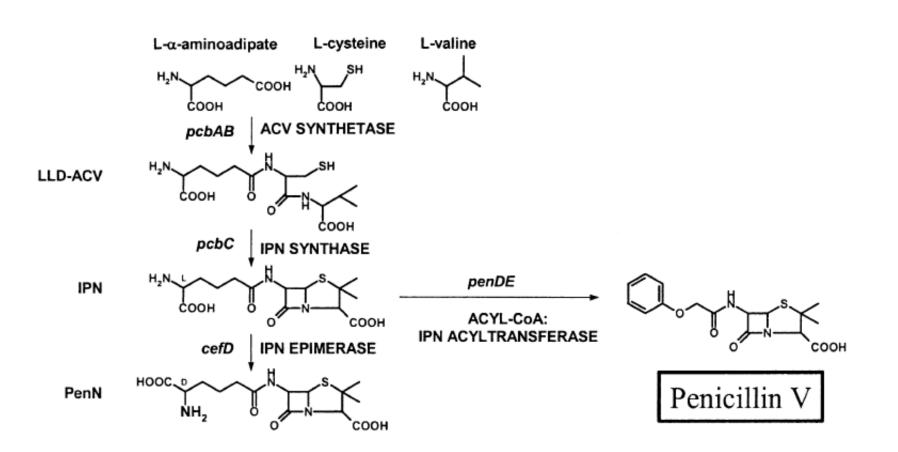


Fig. 2. Biosyntheses of the β -lactams penicillin V, cephalosporin C and cephamycin C. Abreviations: LLD-ACV, α -L-aminoadipyl-L-cysteinyl-D-valine; IPN, isopenicillin N; PenN, penicillin N; DAOC, deacetoxycephalosporin C; DAC, deacetylcephalosporin C; OCDAC, O-carbamoyl-deacetylcephalosporin C; HOCDAC, 7-a-hydroxy-O-carbamoyl-deacetylcephalosporin C.

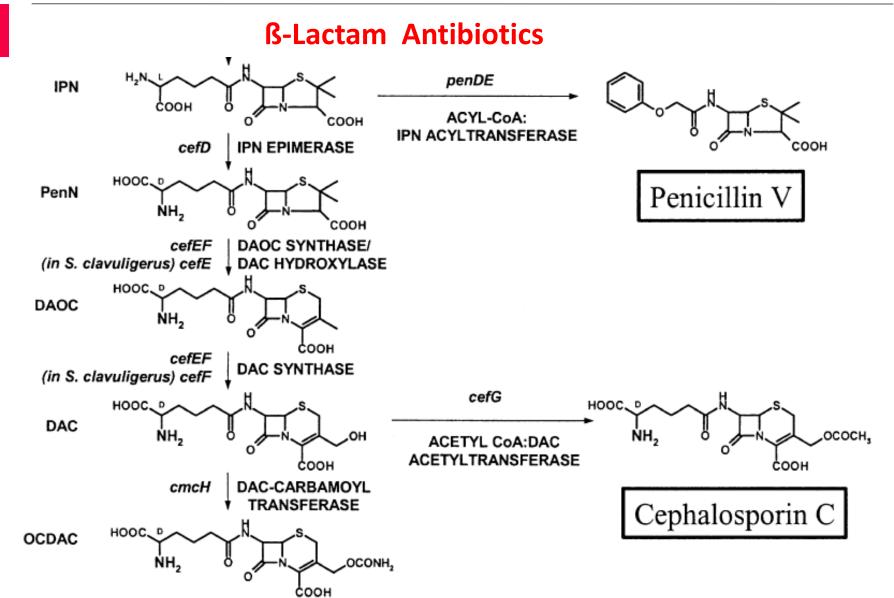
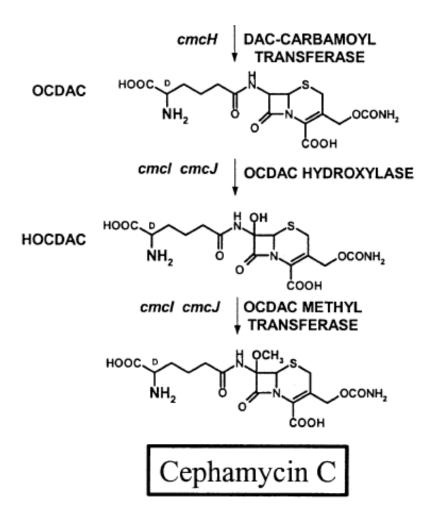



Fig. 2. Biosyntheses of the β-lactams penicillin V, cephalosporin C and cephamycin C. Abreviations: LLD-ACV, α-L-aminoadipyl-L-cysteinyl-Dvaline; IPN, isopenicillin N; PenN, penicillin N; DAOC, deacetoxycephalosporin C; DAC, deacetylcephalosporin C; OCDAC, O-carbamoyldeacetylcephalosporin C; HOCDAC, 7-a-hydroxy-O-carbamoyl-deacetylcephalosporin C.

ß-Lactam Antibiotics

Cephalosporin C

Fig. 2. Biosyntheses of the β-lactams penicillin V, cephalosporin C and cephamycin C. Abreviations: LLD-ACV, α-L-aminoadipyl-L-cysteinyl-Dvaline; IPN, isopenicillin N; PenN, penicillin N; DAOC, deacetoxycephalosporin C; DAC, deacetylcephalosporin C; OCDAC, O-carbamoyldeacetylcephalosporin C; HOCDAC, 7-a-hydroxy-O-carbamoyl-deacetylcephalosporin C.

MOL.921 Molecular Biotechnology II

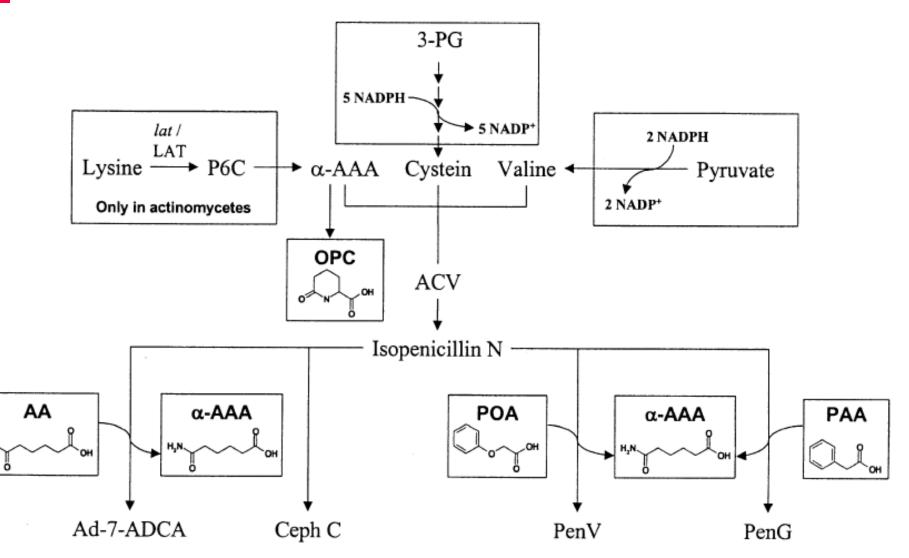


Fig. 6. Different precursors in the production of β -lactams.

MOL.921 Molecular Biotechnology II

35

B-Lactam Antibiotics

Protein	Organism	Gene	Gene size (bp)	Protein size(kD)	Reference	Km (µM)	pH opt	Reference
ACVS P. chr A. chr A. nid N. lac S. cla	P. chr	pcbAB		426	Diez et al. (1990)			
	A. chr	pcbAB	11328 11136	424 414.8	Smith et al. (1990) Gutiérrez et al. (1991)	46 (Aad), 80 (Cys), 83 (Val) 170 (Aad), 26 (Cys), 340 (Val) 120 (Aad), 90 (Cys), 320 (Val)	8.4 7.5 8.3	Theilgaard et al. (1997) Banko et al. (1987), Baldwin et al. (1990) Kallow et al. (1998)
		acvA	11310	422.5	MacCabe et al. (1991)	nd	nd	Van Liempt et al. (1989)
		pcbAB pcbAB		404.1 nd	Coque et al. (1991) Tobin et al. (1991)	nd 560 (Aad), 70 (Cys), 1140 (Val)	nd	Coque et al. (1996) Jensen et al. (1988)
	5. Cu	рсоль	nu	na	100m et al. (1991)	630 (Aad), 120 (Cys), 1140 (Val) 630 (Aad), 120 (Cys), 300 (Val) 630 (Aad), 430 (Cys), 380 (Val)	8.5	Zhang et al. (1992) Kadima et al. (1995)
IPNS P.	P. dur	pcbC	993	38	Barredo et al. (1989)	130 (ACV)		Barris and states
	A. chr	pcbC	1014	38.4	Carr et al. (1986) Samson et al. (1985)	170 (ACV)	7.8 nd	Ramos et al. (1985) Baldwin et al. (1985a, b, 1987)
						300 (ACV)		Kupka et al., 1983; Pang et al., 1984
	A. nid	pcbC	993	37.5	Ramón et al. (1987) Weigel et al. (1988)	nd	nd	
	N. lac	pcbC	984	37.5	Coque et al. (1991)	180 (ACV)	nd	Castro et al. (1988)
	S. cla	pcbC	1316	36.9	Leskiw et al. (1988)	320 (ACV)	7.0	Jensen et al. (1986)
AT	P. dur	penDE	1274	39.9	Barredo et al. (1989)	4000 (IPN), 23 (IPN + PA-CoA) 9,3 (6-APA + PA-CoA) 6 (PA-CoA), 2000 (PenV)	8.0-8.5	Alvarez et al. (1987, 1993)
	A. nid	acyA	1217	39.2	Montenegro et al. (1990)	nd	nd	
IPNE	A. chr	nd	nd	nd		nd	nd	
	N. lac	cefD	1194	43.6	Coque et al. (1993)	270 (IPN)	7.0	Laiz et al. (1990)
	S. cla	cefD	1194	43.5	Kovacevic et al. (1989)	nd	nd	Usui and Yu (1989)
DAOCS/DACS	A. chr	cefEF	996	36.5	Samson et al. (1987)	29 (PenN),22 (2-oxo)/ 18 (DAOQ, 20(2-oxo)	7.5-7.8/7.0-7.5	Yeh et al. (1991)
DAOCS	N. lac	cefE	942	34.5	Coque et al. (1993)	52 (PenN), 3 (2-oxo)	(5-11)	Cortès et al. (1987)
	S. cla	cefE	933	34.5	Kovacevic et al. (1989)	35 (PenN), 22 (2-oxo)	7.4	Yeh et al. (1991)
DACS	N. lac	cefF	933	34.4	Coque et al. (1996)	nd	nd	
	S. cla	cefF	954	34.6	Kovacevic and Miller (1991)	25 (DAOC), 14 (2-oxo)	7.0-7.4	Yeh et al. (1991)
DAT	A. chr	cefG	1332	49.3	Gutiérrez et al. (1992)	nd	7.0-7.5	Fujisawa and Kanzaki (1975)
		cefG cefG	1299 1300	nd 41	Matsuda et al. (1992)			Felix et al. (1980)
		cejG	1300	41	Mathison et al. (1993)			
DACCT	N. lac S. cla	cmcH cmcH	1563 1566	57.1 nd	Coque et al. (1995b) Alexander and Jensen (1998)	nd nd	nd nd	
	<i>5. Cu</i>	cmcm		na		iid	na	
P7	N. lac S. cla	cmcI cmcI	711 711	27 32	Coque et al. (1995a) Xiao et al. (1991)	nd 720 (CephC)	nd 7.3–7.7	Xiao et al. (1991)
	5 . CR	emer	, 11	32	Alexander and Jensen (1998)	/20 (cepite)	1.5-1.1	Anao et al. (1771)
P8	N. lac	cmcJ	876	32	Coque et al. (1995a)	nd	nd	
	S. cla	cmcJ	933	nd	Alexander and Jensen (1998)	nd	nd	

Genes encoding the enzymes in the β -lactam biosynthesis pathways and kinetic properties of the enzymes

Proteins: ACVS, α-L-aminoadipyl-L-cysteinyl-D-valine synthase; DACS, deacetylcephalosporin C synthase; DAOCS, deacetoxycephalosporin C synthase; DAT, acetyl-CoA: deacetylcephalosporin C acetyltransferase; IAT, acyl-CoA:IPN acyltranferase; IPNE, isopenicillin N epimerase; IPNS, isopenicillin N synthase. Organisms: *A. chr, Acremonium chrysogenum; A. nid, Aspergillus nidulans; N. lac, Norcardia lactamdurans; P. chr, Penicillium chrysogenum; S. cla, Streptomyces clatuligerus.* Affinity constants: Aad, L-α-aminoadipate; ACV, α-L-aminoadipyl-L-cysteinyl-D-valine; 6-APA, 6-aminopenicillanic acid; Cys, cysteine; DAOC deacetoxycephalosporin C; IPN, isopenicillin N; 2-oxo, 2-oxoglutarate; PenN, penicillin N; PenV, penicillin V; PA-CoA, phenylacetic acid-CoA; Val, valine.

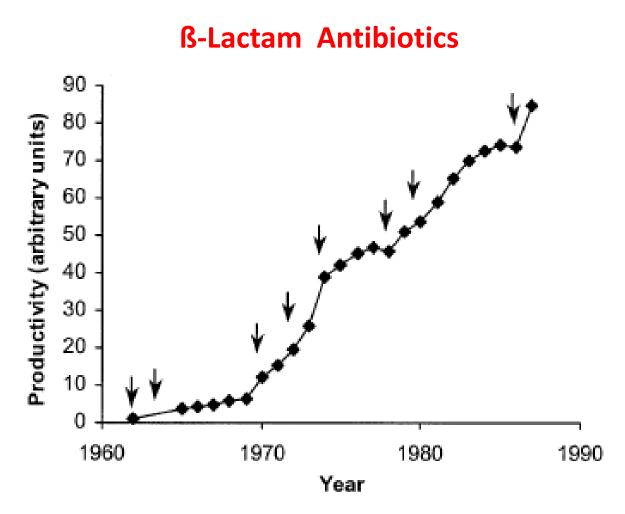


Fig. 3. Increase in productivity (output rate/unit volume, arbitary units) of pencillin G production by Gist Brocades, Delft, in the period between 1962 and 1987. The introduction of new productions strains is indicated with arrows. Based on Nielsen, 1997.

ß-Lactam Antibiotics

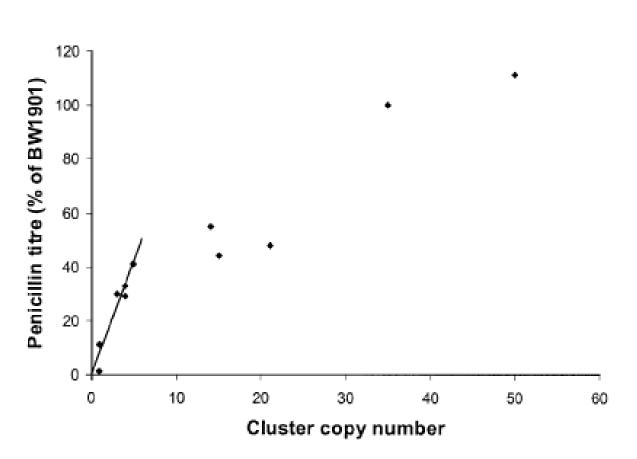
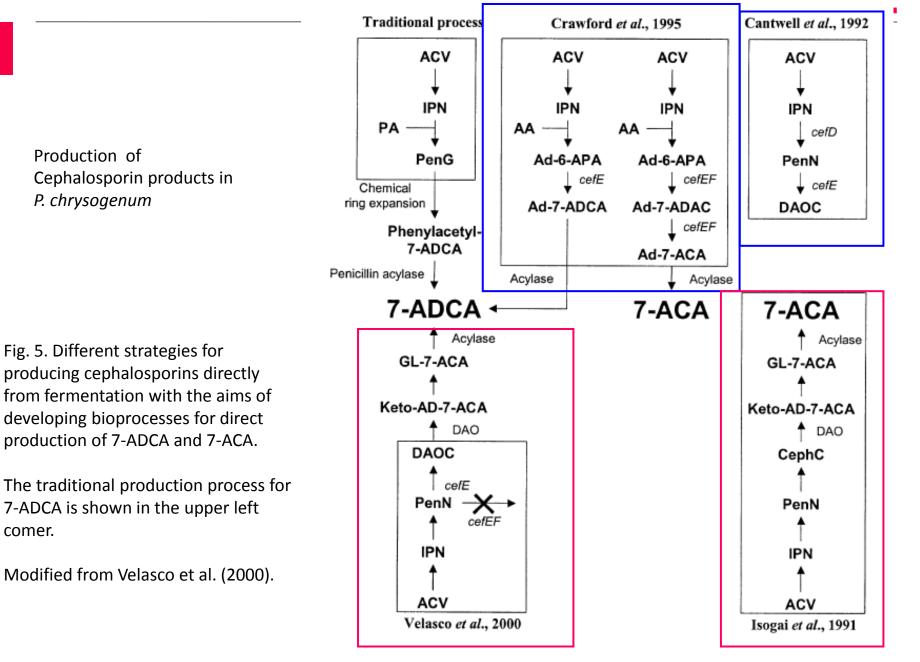



Fig. 4. Results of the SmithKline Beecham strain improvement series. Penicillin titre in percentage of the SmithKline Beecham strain BW 1901 versus penicillin cluster copy number. Modified from Newbert et al. (1997).

Fermentation process in P. chrysogenum

Fermentation process in A. chrysogenum

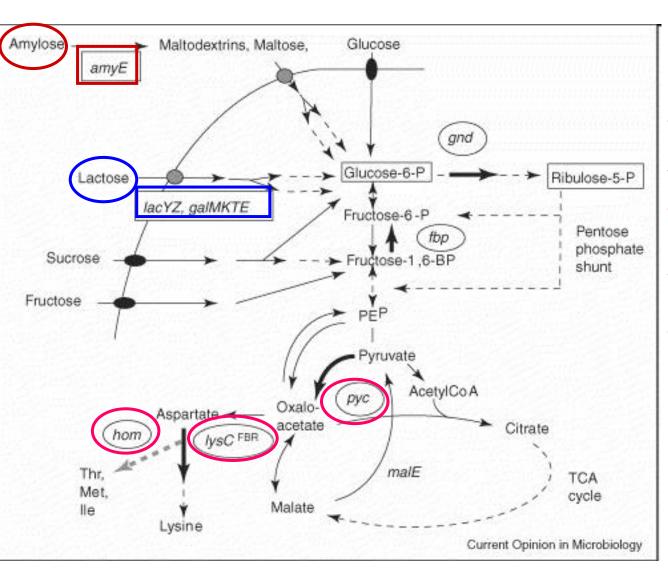
Table 1 World Produ	uction of Amino Acids
---------------------	-----------------------

Production scale (tons/y)	Amino acid	Preferred production method	Main use	
800,000	L-Glutamic acid	Fermentation	Flavor enhancer	
350,000	L-Lysine	Fermentation	Feed additive	
300,000	D.L-Methionine	Chemical synthesis	Feed additive	
8000-100,000	L-Aspartate	Enzymatic catalysis	Aspartame	
	L-Phenylalanine	Fermentation	Aspartame	
	L-Threonine	Fermentation	Feed additive	
	Glycine	Chemical synthesis	Food additive, sweetener	
1000-8000	L-Tryptophan	Fermentation	Feed additive	
	L-Arginine	Fermentation, extraction	Pharmaceuticals	
	L-Cysteine	Reduction of cystine	Food additive, pharma- ceuticals	
100-1000	L-Alanine	Enzymatic catalysis	Flavor enhancer, phar- maceuticals	
	L-Asparagine	Extraction	Pharmaceuticals	
	L-Glutamine	Fermentation, extraction	Pharmaceuticals	
	L-Histidine	Fermentation, extraction	Pharmaceuticals	
	L-Isoleucine	Fermentation, extraction	n Pharmaceuticals	
	L-Leucine	Fermentation, extraction	Pharmaceuticals	
	L-Methionine	Enzymatic catalysis	Pharmaceuticals	
	L-Proline	Fermentation, extraction	Pharmaceuticals	
	L-Serine	Fermentation, extraction	Pharmaceuticals, cos- metics	
	L-Tyrosine	Extraction	Pharmaceuticals	
	L-Valine	Enzymatic catalysis	Pharmaceuticals	

Production of Amino Acids

Source: Reprinted with permission from: Leuchtenberger W. Products of primary metabolism. Biotechnology 1996; 6:455-502.

⁴⁰ Metabolic Engineering of Amino Acid Production

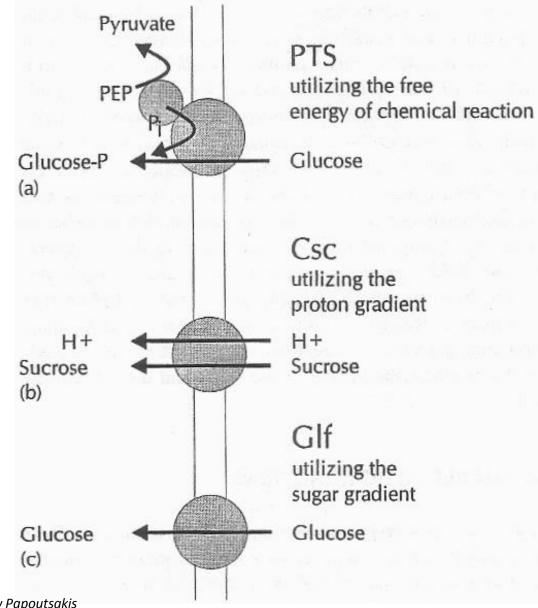

 Table 2
 Classical Development of an Amino Acid Producer: Development of an L-Arginine Producer of C. glutamicum by

 Subsequent Introduction of Mutations and the Known Characters of the Mutants

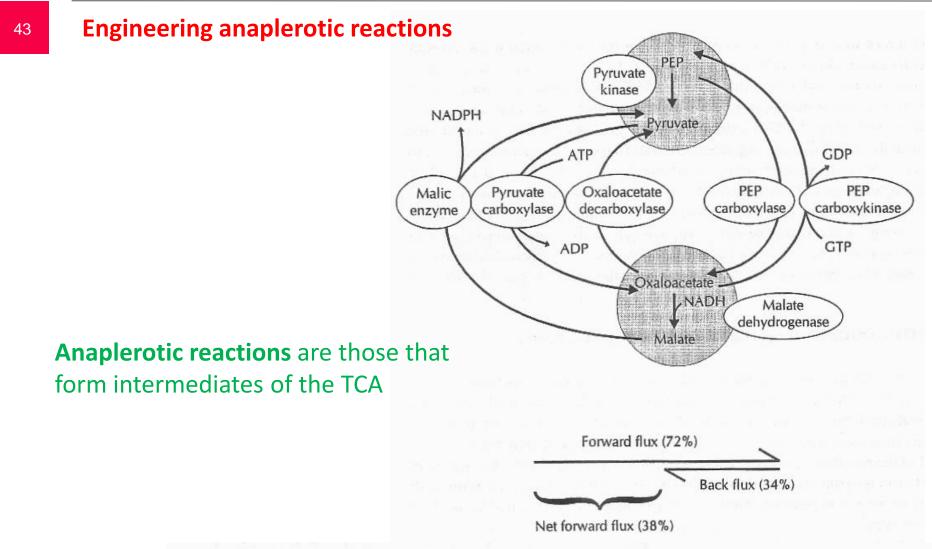
		Relative activity			
Strain	Phenotype selected	Acetylglutamokinase	Ornithine carbamyl-transferase	Feedback regulation of kinase	L-Arginine produced (g/L)
KY 10025	Wild-type strain	1.0	-	Sensitive	0
KY 10150	Isoleucine minus		1.0		0
DSS-8	D-Serine sensitive	19.9	11.5	Sensitive	1.5
KY 10479	D-Arginine resistant	19.1		Resistant	6.8
KY 10480	Arginine hydroxamate resistant	18.2		Resistant	16.6
KY 10508	Isoleucine plus	18.2	16.4	Resistant	19.9
KY 10577	Thiazole alanine resistant	18.7	19.3	Resistant	20-25

41 Metabolic Engineering of Amino Acid Production

Metabolic engineering of C. glutamicum for lysine production. Aspartokinase, homoserine dehydrogenase and pyruvate carboxylase are well-known to be important for lysine production and mutant alleles of the respective genes lysC, hom and pyc were identified. Introduction of these alleles into C. glutamicum wild type enabled high-yield lysine production [36]. Additional introduction of a mutant gnd allele coding for increased lysine production on glucose [37] and overexpression of endogenous fbp increased lysine production on sucrose [38]. Expression of lacYZ from L. delbrueckii subsp. bulgaricus and of galMKTE from L. lactis subsp. cremoris enabled lysine production from whey [40]. Plasmid-borne expression of amyE from S. griseus enabled lysine production with amylose as carbon source [41]. Single or several enzymatic reactions are indicated by straight and interrupted lines, respectively. Bold arrows denote increased conversions and bold, grey, interrupted arrow the reduced conversion by homoserine dehydrogenase. Next to the respective enzymatic reactions, endogenous and heterologous gene names are given in circles and squares, respectively. Transport via phosphoenolpyruvate-dependent transport systems is depicted in black ovals, transport via other systems in grey circles.


Current Opinion in Microbiology 2006, 9:268–274

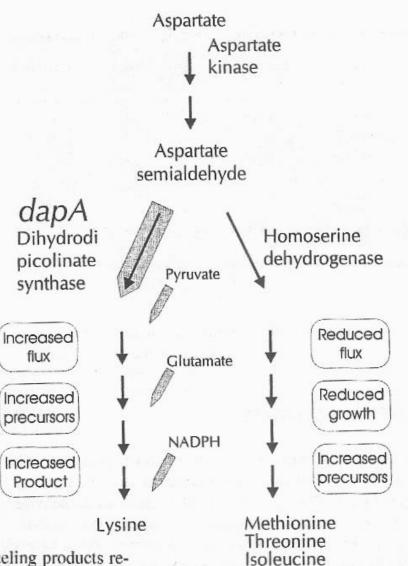
⁴² Engineering of Substrate Uptake


PTS: Phosphotransferase system Csc: Sucrose permease Glf: Glucose difusion facilitator

Different modes of sugar uptake and activation. Glucose uptake by the PTS, wher phosphoenol pyruvate (PEP) is required for translocation together with activation (**a**), sugar transport in symport with protons as in the case for Csc and GalP (**b**), and facilitated glucose diffusion by the facilitator Glf not requiring metabolic energy (**c**).

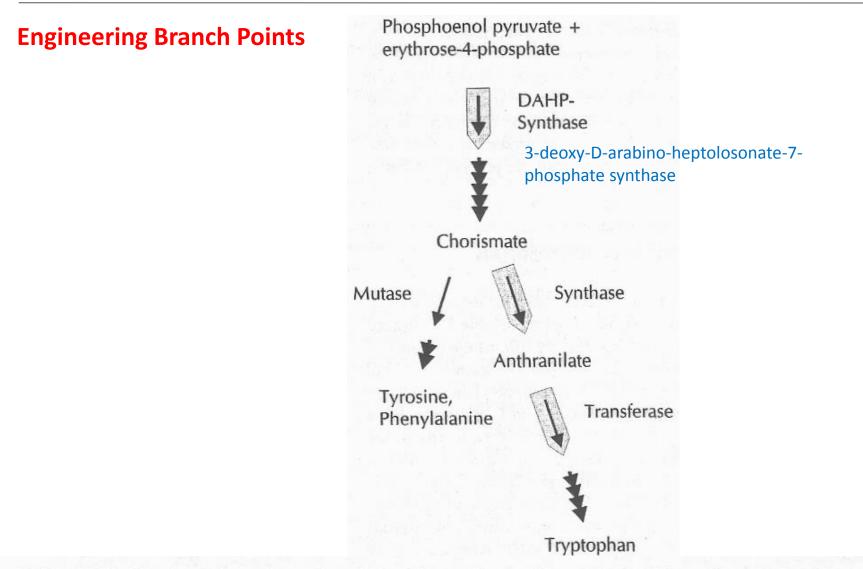
Taken from "Metabolic Engineering", edited by Sang Yup Lee, E. Terry Papoutsakis

Figure 2 Interconversion of C-3 units to C-4 units. Enzymes of the anaplerotic reactions and adjacent reactions in *Corynebacterium glutamicum* that contribute to flux between C-3 units and C-4 units. The sum of forward flux (72%) and the sum of back flux (34%) are shown to result in a net forward flux (38%).


44 dapA Overexpression leads to growth limitation

Strain	dapA copies	Synthase activity ^a	Growth rate (1/h)	Intracellular alanine (mM)	Excretion rate ^b
13032	1	0.051	0.43	3	0
13032::dapA	2	0.072	0.37	6	0.25
13032 pKW3:: <i>dapA</i>	6	0.250	0.36	8	2.7
13032 pJC23	20	0.630	0.22	9	3.8

Table 3 Molecularly Introduced Growth Limitation to Increase Product Excretion


^a The specific synthase activity is in micromoles per minute per milligram of protein [μ mol/ (min \cdot mg)].

^b Lysine excretion rate in millimoles per minute per gram [mmol/(min · g)] dry weight.

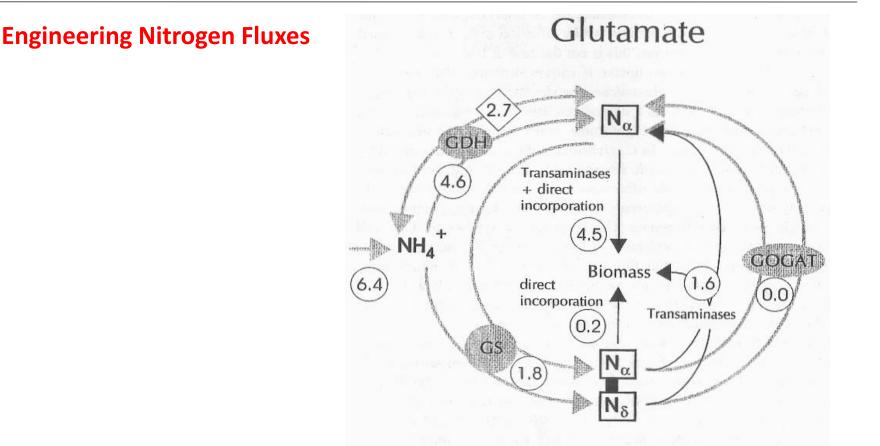
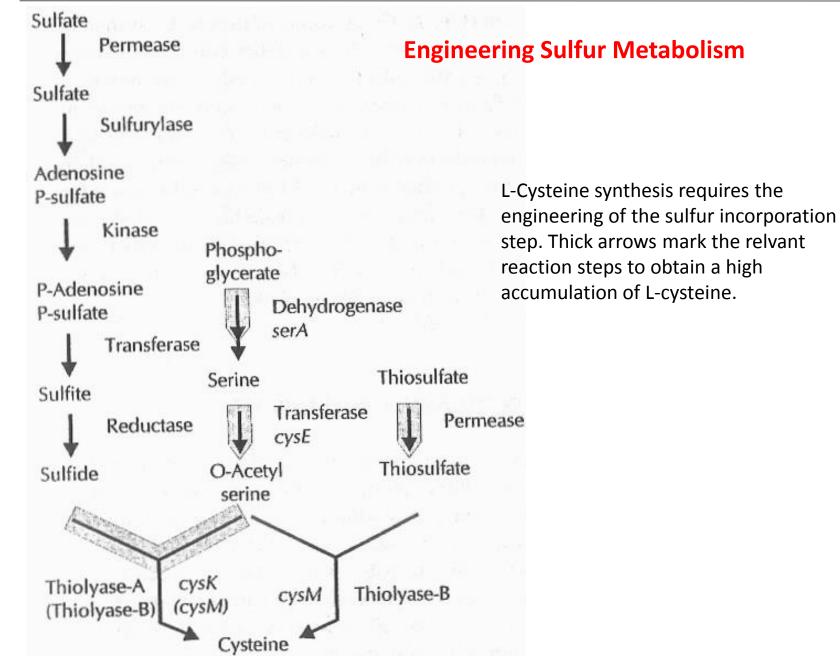
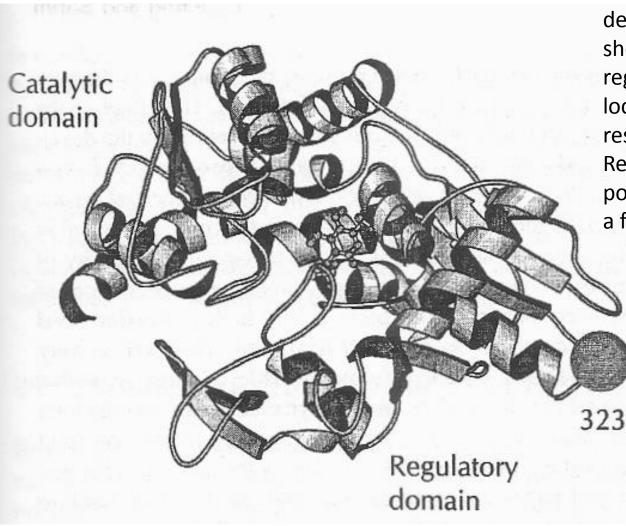
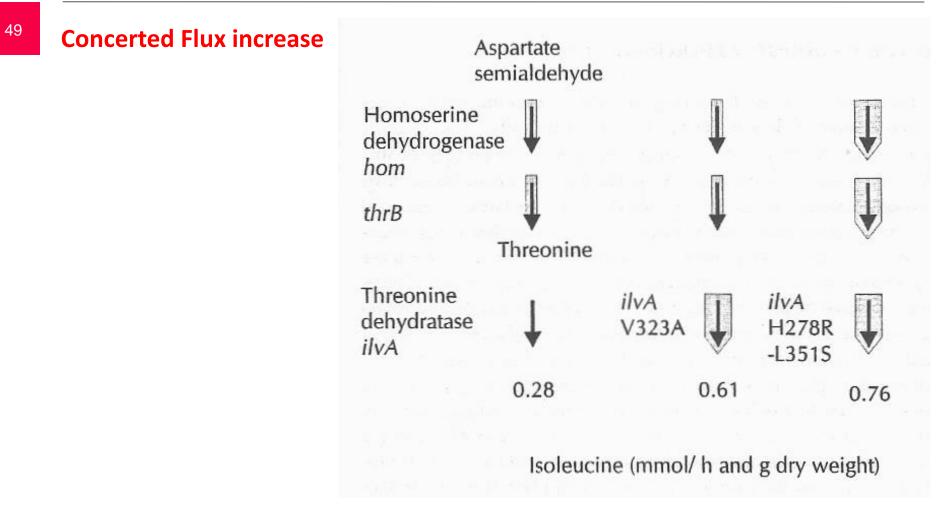

Figure 3 Growth limitation results in the increased availability of fueling products required for overproduction. As a consequence of *dapA* overexpression, growth is reduced and more pyruvate and further fueling products are available for L-lysine synthesis.

Figure 5 Engineering a branch point within amino acid synthesis. The relevant reactions (thick arrows) are shown to achieve chorismate formation and the entire conversion of this branch point metabolite to L-tryptophan.



Glutamine


Figure 6 In vivo nitrogen fluxes as quantified by NMR spectroscopy. The fluxes via the glutamate dehydrogenase (GDH), glutamine synthetase (GS), and glutamate oxoglutarate aminotransferase (GOGAT) were quantified in *Corynebacterium glutamicum* grown in continuous culture at a dilution rate of 0.05 1/h. Numbers in circles give molar nitrogen net fluxes [μ mol/(min \cdot g) (dry weight)]; the exchange flux is given in the diamond.


Engineering of Enzyme Properties → Protein Engineering

Engineering enzyme activity by amino acid exchange. Model of the Threonine dehydratase polypeptide showing the catalytic and regulatory domain, as well as location of the amino acid residue 323.

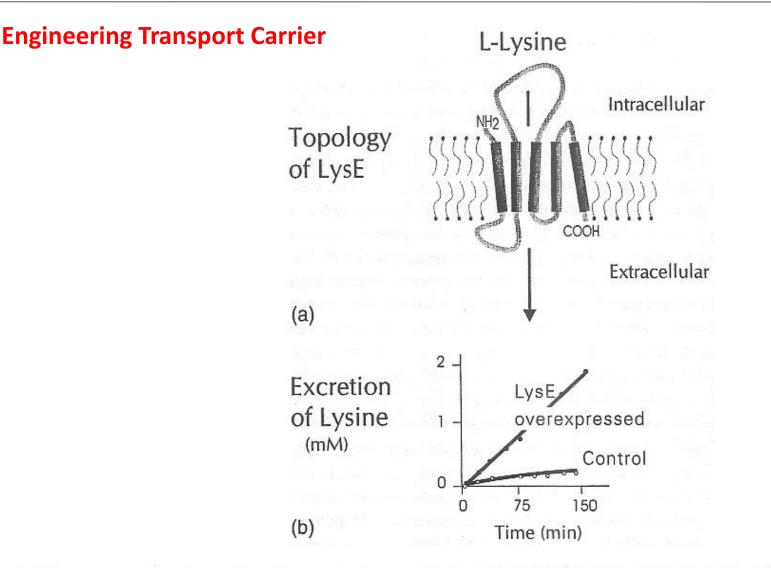

Replacement of valine in this position by alanine results in a feedback-resistant enzyme.

Figure 8 Concerted flux increase to achieve high L-isoleucine formation rates. The size of the arrows roughly corresponds to the respective expression levels of the genes. The most successful *ilvA* allele used at each step is given by the single-letter code for the amino acid replaced.

Figure 9 The L-lysine export carrier of *C. glutamicum*. (a) Model of the structure of this new type of carrier. (b) The increased excretion rate of L-lysine in response to overex-pression of the carrier.